mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
329 lines
12 KiB
Python
329 lines
12 KiB
Python
|
|
import logging
|
|
from typing import Dict
|
|
from typing import List
|
|
from typing import Optional
|
|
from typing import Tuple
|
|
from typing import Union
|
|
import tempfile
|
|
import codecs
|
|
import requests
|
|
import re
|
|
import copy
|
|
import torch
|
|
import torch.nn as nn
|
|
import random
|
|
import numpy as np
|
|
import time
|
|
|
|
from funasr.models.transformer.utils.add_sos_eos import add_sos_eos
|
|
from funasr.models.transformer.utils.nets_utils import make_pad_mask, pad_list
|
|
from funasr.metrics.compute_acc import th_accuracy
|
|
from funasr.train_utils.device_funcs import force_gatherable
|
|
|
|
from funasr.models.paraformer.search import Hypothesis
|
|
|
|
from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio, extract_fbank
|
|
from funasr.utils import postprocess_utils
|
|
from funasr.utils.datadir_writer import DatadirWriter
|
|
from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
|
|
from funasr.register import tables
|
|
from funasr.models.ctc.ctc import CTC
|
|
|
|
from funasr.models.paraformer.model import Paraformer
|
|
|
|
@tables.register("model_classes", "BiCifParaformer")
|
|
class BiCifParaformer(Paraformer):
|
|
"""
|
|
Author: Speech Lab of DAMO Academy, Alibaba Group
|
|
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
|
|
https://arxiv.org/abs/2206.08317
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
super().__init__(*args, **kwargs)
|
|
|
|
|
|
def _calc_pre2_loss(
|
|
self,
|
|
encoder_out: torch.Tensor,
|
|
encoder_out_lens: torch.Tensor,
|
|
ys_pad: torch.Tensor,
|
|
ys_pad_lens: torch.Tensor,
|
|
):
|
|
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
|
|
encoder_out.device)
|
|
if self.predictor_bias == 1:
|
|
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
|
|
ys_pad_lens = ys_pad_lens + self.predictor_bias
|
|
_, _, _, _, pre_token_length2 = self.predictor(encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id)
|
|
|
|
# loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length)
|
|
loss_pre2 = self.criterion_pre(ys_pad_lens.type_as(pre_token_length2), pre_token_length2)
|
|
|
|
return loss_pre2
|
|
|
|
|
|
def _calc_att_loss(
|
|
self,
|
|
encoder_out: torch.Tensor,
|
|
encoder_out_lens: torch.Tensor,
|
|
ys_pad: torch.Tensor,
|
|
ys_pad_lens: torch.Tensor,
|
|
):
|
|
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
|
|
encoder_out.device)
|
|
if self.predictor_bias == 1:
|
|
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
|
|
ys_pad_lens = ys_pad_lens + self.predictor_bias
|
|
pre_acoustic_embeds, pre_token_length, _, pre_peak_index, _ = self.predictor(encoder_out, ys_pad,
|
|
encoder_out_mask,
|
|
ignore_id=self.ignore_id)
|
|
|
|
# 0. sampler
|
|
decoder_out_1st = None
|
|
if self.sampling_ratio > 0.0:
|
|
sematic_embeds, decoder_out_1st = self.sampler(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens,
|
|
pre_acoustic_embeds)
|
|
else:
|
|
sematic_embeds = pre_acoustic_embeds
|
|
|
|
# 1. Forward decoder
|
|
decoder_outs = self.decoder(
|
|
encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens
|
|
)
|
|
decoder_out, _ = decoder_outs[0], decoder_outs[1]
|
|
|
|
if decoder_out_1st is None:
|
|
decoder_out_1st = decoder_out
|
|
# 2. Compute attention loss
|
|
loss_att = self.criterion_att(decoder_out, ys_pad)
|
|
acc_att = th_accuracy(
|
|
decoder_out_1st.view(-1, self.vocab_size),
|
|
ys_pad,
|
|
ignore_label=self.ignore_id,
|
|
)
|
|
loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length)
|
|
|
|
# Compute cer/wer using attention-decoder
|
|
if self.training or self.error_calculator is None:
|
|
cer_att, wer_att = None, None
|
|
else:
|
|
ys_hat = decoder_out_1st.argmax(dim=-1)
|
|
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
|
|
|
|
return loss_att, acc_att, cer_att, wer_att, loss_pre
|
|
|
|
|
|
def calc_predictor(self, encoder_out, encoder_out_lens):
|
|
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
|
|
encoder_out.device)
|
|
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index, pre_token_length2 = self.predictor(encoder_out,
|
|
None,
|
|
encoder_out_mask,
|
|
ignore_id=self.ignore_id)
|
|
return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index
|
|
|
|
|
|
def calc_predictor_timestamp(self, encoder_out, encoder_out_lens, token_num):
|
|
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
|
|
encoder_out.device)
|
|
ds_alphas, ds_cif_peak, us_alphas, us_peaks = self.predictor.get_upsample_timestamp(encoder_out,
|
|
encoder_out_mask,
|
|
token_num)
|
|
return ds_alphas, ds_cif_peak, us_alphas, us_peaks
|
|
|
|
|
|
def forward(
|
|
self,
|
|
speech: torch.Tensor,
|
|
speech_lengths: torch.Tensor,
|
|
text: torch.Tensor,
|
|
text_lengths: torch.Tensor,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
|
"""Frontend + Encoder + Decoder + Calc loss
|
|
Args:
|
|
speech: (Batch, Length, ...)
|
|
speech_lengths: (Batch, )
|
|
text: (Batch, Length)
|
|
text_lengths: (Batch,)
|
|
"""
|
|
if len(text_lengths.size()) > 1:
|
|
text_lengths = text_lengths[:, 0]
|
|
if len(speech_lengths.size()) > 1:
|
|
speech_lengths = speech_lengths[:, 0]
|
|
|
|
batch_size = speech.shape[0]
|
|
|
|
# Encoder
|
|
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
|
|
|
|
|
loss_ctc, cer_ctc = None, None
|
|
loss_pre = None
|
|
stats = dict()
|
|
|
|
# decoder: CTC branch
|
|
if self.ctc_weight != 0.0:
|
|
loss_ctc, cer_ctc = self._calc_ctc_loss(
|
|
encoder_out, encoder_out_lens, text, text_lengths
|
|
)
|
|
|
|
# Collect CTC branch stats
|
|
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
|
|
stats["cer_ctc"] = cer_ctc
|
|
|
|
|
|
# decoder: Attention decoder branch
|
|
loss_att, acc_att, cer_att, wer_att, loss_pre = self._calc_att_loss(
|
|
encoder_out, encoder_out_lens, text, text_lengths
|
|
)
|
|
|
|
loss_pre2 = self._calc_pre2_loss(
|
|
encoder_out, encoder_out_lens, text, text_lengths
|
|
)
|
|
|
|
# 3. CTC-Att loss definition
|
|
if self.ctc_weight == 0.0:
|
|
loss = loss_att + loss_pre * self.predictor_weight + loss_pre2 * self.predictor_weight * 0.5
|
|
else:
|
|
loss = self.ctc_weight * loss_ctc + (
|
|
1 - self.ctc_weight) * loss_att + loss_pre * self.predictor_weight + loss_pre2 * self.predictor_weight * 0.5
|
|
|
|
# Collect Attn branch stats
|
|
stats["loss_att"] = loss_att.detach() if loss_att is not None else None
|
|
stats["acc"] = acc_att
|
|
stats["cer"] = cer_att
|
|
stats["wer"] = wer_att
|
|
stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None
|
|
stats["loss_pre2"] = loss_pre2.detach().cpu()
|
|
|
|
stats["loss"] = torch.clone(loss.detach())
|
|
|
|
# force_gatherable: to-device and to-tensor if scalar for DataParallel
|
|
if self.length_normalized_loss:
|
|
batch_size = int((text_lengths + self.predictor_bias).sum())
|
|
|
|
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
|
|
return loss, stats, weight
|
|
|
|
def generate(self,
|
|
data_in: list,
|
|
data_lengths: list = None,
|
|
key: list = None,
|
|
tokenizer=None,
|
|
frontend=None,
|
|
**kwargs,
|
|
):
|
|
|
|
# init beamsearch
|
|
is_use_ctc = kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
|
|
is_use_lm = kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None
|
|
if self.beam_search is None and (is_use_lm or is_use_ctc):
|
|
logging.info("enable beam_search")
|
|
self.init_beam_search(**kwargs)
|
|
self.nbest = kwargs.get("nbest", 1)
|
|
|
|
meta_data = {}
|
|
# extract fbank feats
|
|
time1 = time.perf_counter()
|
|
audio_sample_list = load_audio(data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000))
|
|
time2 = time.perf_counter()
|
|
meta_data["load_data"] = f"{time2 - time1:0.3f}"
|
|
speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"),
|
|
frontend=self.frontend)
|
|
time3 = time.perf_counter()
|
|
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
|
|
meta_data[
|
|
"batch_data_time"] = speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
|
|
|
|
speech.to(device=kwargs["device"]), speech_lengths.to(device=kwargs["device"])
|
|
|
|
# Encoder
|
|
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
|
if isinstance(encoder_out, tuple):
|
|
encoder_out = encoder_out[0]
|
|
|
|
# predictor
|
|
predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens)
|
|
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = predictor_outs[0], predictor_outs[1], \
|
|
predictor_outs[2], predictor_outs[3]
|
|
pre_token_length = pre_token_length.round().long()
|
|
if torch.max(pre_token_length) < 1:
|
|
return []
|
|
decoder_outs = self.cal_decoder_with_predictor(encoder_out, encoder_out_lens, pre_acoustic_embeds,
|
|
pre_token_length)
|
|
decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1]
|
|
|
|
# BiCifParaformer, test no bias cif2
|
|
|
|
_, _, us_alphas, us_peaks = self.calc_predictor_timestamp(encoder_out, encoder_out_lens,
|
|
pre_token_length)
|
|
|
|
results = []
|
|
b, n, d = decoder_out.size()
|
|
for i in range(b):
|
|
x = encoder_out[i, :encoder_out_lens[i], :]
|
|
am_scores = decoder_out[i, :pre_token_length[i], :]
|
|
if self.beam_search is not None:
|
|
nbest_hyps = self.beam_search(
|
|
x=x, am_scores=am_scores, maxlenratio=kwargs.get("maxlenratio", 0.0),
|
|
minlenratio=kwargs.get("minlenratio", 0.0)
|
|
)
|
|
|
|
nbest_hyps = nbest_hyps[: self.nbest]
|
|
else:
|
|
|
|
yseq = am_scores.argmax(dim=-1)
|
|
score = am_scores.max(dim=-1)[0]
|
|
score = torch.sum(score, dim=-1)
|
|
# pad with mask tokens to ensure compatibility with sos/eos tokens
|
|
yseq = torch.tensor(
|
|
[self.sos] + yseq.tolist() + [self.eos], device=yseq.device
|
|
)
|
|
nbest_hyps = [Hypothesis(yseq=yseq, score=score)]
|
|
for nbest_idx, hyp in enumerate(nbest_hyps):
|
|
ibest_writer = None
|
|
if ibest_writer is None and kwargs.get("output_dir") is not None:
|
|
writer = DatadirWriter(kwargs.get("output_dir"))
|
|
ibest_writer = writer[f"{nbest_idx + 1}best_recog"]
|
|
# remove sos/eos and get results
|
|
last_pos = -1
|
|
if isinstance(hyp.yseq, list):
|
|
token_int = hyp.yseq[1:last_pos]
|
|
else:
|
|
token_int = hyp.yseq[1:last_pos].tolist()
|
|
|
|
# remove blank symbol id, which is assumed to be 0
|
|
token_int = list(filter(lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int))
|
|
|
|
# Change integer-ids to tokens
|
|
token = tokenizer.ids2tokens(token_int)
|
|
text = tokenizer.tokens2text(token)
|
|
|
|
_, timestamp = ts_prediction_lfr6_standard(us_alphas[i][:encoder_out_lens[i] * 3],
|
|
us_peaks[i][:encoder_out_lens[i] * 3],
|
|
copy.copy(token),
|
|
vad_offset=kwargs.get("begin_time", 0))
|
|
|
|
text_postprocessed, time_stamp_postprocessed, word_lists = postprocess_utils.sentence_postprocess(token, timestamp)
|
|
|
|
result_i = {"key": key[i], "token": token, "text": text, "text_postprocessed": text_postprocessed,
|
|
"time_stamp_postprocessed": time_stamp_postprocessed,
|
|
"word_lists": word_lists
|
|
}
|
|
results.append(result_i)
|
|
|
|
if ibest_writer is not None:
|
|
ibest_writer["token"][key[i]] = " ".join(token)
|
|
ibest_writer["text"][key[i]] = text
|
|
ibest_writer["text_postprocessed"][key[i]] = text_postprocessed
|
|
|
|
|
|
return results, meta_data
|