Merge pull request #67 from alibaba-damo-academy/main

update dev_lhn from master
This commit is contained in:
hnluo 2023-02-06 17:50:54 +08:00 committed by GitHub
commit 888b67da39
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 74 additions and 533 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 180 KiB

After

Width:  |  Height:  |  Size: 143 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 186 KiB

After

Width:  |  Height:  |  Size: 394 KiB

View File

@ -28,3 +28,19 @@ Or you can use the finetuned model for inference directly.
```python
python infer.py
```
### Inference using local finetuned model
- Modify inference related parameters in `infer_after_finetune.py`
- <strong>output_dir:</strong> # result dir
- <strong>data_dir:</strong> # the dataset dir needs to include `test/wav.scp`. If `test/text` is also exists, CER will be computed
- <strong>decoding_model_name:</strong> # set the checkpoint name for decoding, e.g., `valid.cer_ctc.ave.pth`
- Then you can run the pipeline to finetune with:
```python
python infer_after_finetune.py
```
- Results
The decoding results can be found in `$output_dir/decoding_results/text.cer`, which includes recognition results of each sample and the CER metric of the whole test set.

View File

@ -0,0 +1,57 @@
import json
import os
import shutil
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from funasr.utils.compute_wer import compute_wer
def modelscope_infer_after_finetune(params):
# prepare for decoding
if not os.path.exists(os.path.join(params["output_dir"], "punc")):
os.makedirs(os.path.join(params["output_dir"], "punc"))
if not os.path.exists(os.path.join(params["output_dir"], "vad")):
os.makedirs(os.path.join(params["output_dir"], "vad"))
pretrained_model_path = os.path.join(os.environ["HOME"], ".cache/modelscope/hub", params["modelscope_model_name"])
for file_name in params["required_files"]:
if file_name == "configuration.json":
with open(os.path.join(pretrained_model_path, file_name)) as f:
config_dict = json.load(f)
config_dict["model"]["am_model_name"] = params["decoding_model_name"]
with open(os.path.join(params["output_dir"], "configuration.json"), "w") as f:
json.dump(config_dict, f, indent=4, separators=(',', ': '))
else:
shutil.copy(os.path.join(pretrained_model_path, file_name),
os.path.join(params["output_dir"], file_name))
decoding_path = os.path.join(params["output_dir"], "decode_results")
if os.path.exists(decoding_path):
shutil.rmtree(decoding_path)
os.mkdir(decoding_path)
# decoding
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model=params["output_dir"],
output_dir=decoding_path,
batch_size=64
)
audio_in = os.path.join(params["data_dir"], "wav.scp")
inference_pipeline(audio_in=audio_in)
# computer CER if GT text is set
text_in = os.path.join(params["data_dir"], "text")
if text_in is not None:
text_proc_file = os.path.join(decoding_path, "1best_recog/token")
compute_wer(text_in, text_proc_file, os.path.join(decoding_path, "text.cer"))
if __name__ == '__main__':
params = {}
params["modelscope_model_name"] = "damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
params["required_files"] = ["am.mvn", "decoding.yaml", "configuration.json", "punc/punc.pb", "punc/punc.yaml", "vad/vad.mvn", "vad/vad.pb", "vad/vad.yaml"]
params["output_dir"] = "./checkpoint"
params["data_dir"] = "./data/test"
params["decoding_model_name"] = "valid.acc.ave_10best.pth"
modelscope_infer_after_finetune(params)

View File

@ -46,11 +46,6 @@ from funasr.models.frontend.wav_frontend import WavFrontend
header_colors = '\033[95m'
end_colors = '\033[0m'
global_asr_language: str = 'zh-cn'
global_sample_rate: Union[int, Dict[Any, int]] = {
'audio_fs': 16000,
'model_fs': 16000
}
class Speech2Text:
"""Speech2Text class
@ -256,142 +251,6 @@ class Speech2Text:
assert check_return_type(results)
return results
# def inference(
# maxlenratio: float,
# minlenratio: float,
# batch_size: int,
# beam_size: int,
# ngpu: int,
# ctc_weight: float,
# lm_weight: float,
# penalty: float,
# log_level: Union[int, str],
# data_path_and_name_and_type,
# asr_train_config: Optional[str],
# asr_model_file: Optional[str],
# cmvn_file: Optional[str] = None,
# lm_train_config: Optional[str] = None,
# lm_file: Optional[str] = None,
# token_type: Optional[str] = None,
# key_file: Optional[str] = None,
# word_lm_train_config: Optional[str] = None,
# bpemodel: Optional[str] = None,
# allow_variable_data_keys: bool = False,
# streaming: bool = False,
# output_dir: Optional[str] = None,
# dtype: str = "float32",
# seed: int = 0,
# ngram_weight: float = 0.9,
# nbest: int = 1,
# num_workers: int = 1,
# **kwargs,
# ):
# assert check_argument_types()
# if batch_size > 1:
# raise NotImplementedError("batch decoding is not implemented")
# if word_lm_train_config is not None:
# raise NotImplementedError("Word LM is not implemented")
# if ngpu > 1:
# raise NotImplementedError("only single GPU decoding is supported")
#
# logging.basicConfig(
# level=log_level,
# format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
# )
#
# if ngpu >= 1 and torch.cuda.is_available():
# device = "cuda"
# else:
# device = "cpu"
#
# # 1. Set random-seed
# set_all_random_seed(seed)
#
# # 2. Build speech2text
# speech2text_kwargs = dict(
# asr_train_config=asr_train_config,
# asr_model_file=asr_model_file,
# cmvn_file=cmvn_file,
# lm_train_config=lm_train_config,
# lm_file=lm_file,
# token_type=token_type,
# bpemodel=bpemodel,
# device=device,
# maxlenratio=maxlenratio,
# minlenratio=minlenratio,
# dtype=dtype,
# beam_size=beam_size,
# ctc_weight=ctc_weight,
# lm_weight=lm_weight,
# ngram_weight=ngram_weight,
# penalty=penalty,
# nbest=nbest,
# streaming=streaming,
# )
# logging.info("speech2text_kwargs: {}".format(speech2text_kwargs))
# speech2text = Speech2Text(**speech2text_kwargs)
#
# # 3. Build data-iterator
# loader = ASRTask.build_streaming_iterator(
# data_path_and_name_and_type,
# dtype=dtype,
# batch_size=batch_size,
# key_file=key_file,
# num_workers=num_workers,
# preprocess_fn=ASRTask.build_preprocess_fn(speech2text.asr_train_args, False),
# collate_fn=ASRTask.build_collate_fn(speech2text.asr_train_args, False),
# allow_variable_data_keys=allow_variable_data_keys,
# inference=True,
# )
#
# finish_count = 0
# file_count = 1
# # 7 .Start for-loop
# # FIXME(kamo): The output format should be discussed about
# asr_result_list = []
# if output_dir is not None:
# writer = DatadirWriter(output_dir)
# else:
# writer = None
#
# for keys, batch in loader:
# assert isinstance(batch, dict), type(batch)
# assert all(isinstance(s, str) for s in keys), keys
# _bs = len(next(iter(batch.values())))
# assert len(keys) == _bs, f"{len(keys)} != {_bs}"
# #batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
#
# # N-best list of (text, token, token_int, hyp_object)
# try:
# results = speech2text(**batch)
# except TooShortUttError as e:
# logging.warning(f"Utterance {keys} {e}")
# hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[])
# results = [[" ", ["sil"], [2], hyp]] * nbest
#
# # Only supporting batch_size==1
# key = keys[0]
# for n, (text, token, token_int, hyp) in zip(range(1, nbest + 1), results):
# # Create a directory: outdir/{n}best_recog
# if writer is not None:
# ibest_writer = writer[f"{n}best_recog"]
#
# # Write the result to each file
# ibest_writer["token"][key] = " ".join(token)
# ibest_writer["token_int"][key] = " ".join(map(str, token_int))
# ibest_writer["score"][key] = str(hyp.score)
#
# if text is not None:
# text_postprocessed = postprocess_utils.sentence_postprocess(token)
# item = {'key': key, 'value': text_postprocessed}
# asr_result_list.append(item)
# finish_count += 1
# asr_utils.print_progress(finish_count / file_count)
# if writer is not None:
# ibest_writer["text"][key] = text
# return asr_result_list
def inference(
maxlenratio: float,
minlenratio: float,

View File

@ -280,162 +280,6 @@ class Speech2Text:
return results
# def inference(
# maxlenratio: float,
# minlenratio: float,
# batch_size: int,
# beam_size: int,
# ngpu: int,
# ctc_weight: float,
# lm_weight: float,
# penalty: float,
# log_level: Union[int, str],
# data_path_and_name_and_type,
# asr_train_config: Optional[str],
# asr_model_file: Optional[str],
# cmvn_file: Optional[str] = None,
# raw_inputs: Union[np.ndarray, torch.Tensor] = None,
# lm_train_config: Optional[str] = None,
# lm_file: Optional[str] = None,
# token_type: Optional[str] = None,
# key_file: Optional[str] = None,
# word_lm_train_config: Optional[str] = None,
# bpemodel: Optional[str] = None,
# allow_variable_data_keys: bool = False,
# streaming: bool = False,
# output_dir: Optional[str] = None,
# dtype: str = "float32",
# seed: int = 0,
# ngram_weight: float = 0.9,
# nbest: int = 1,
# num_workers: int = 1,
# frontend_conf: dict = None,
# fs: Union[dict, int] = 16000,
# lang: Optional[str] = None,
# **kwargs,
# ):
# assert check_argument_types()
#
# if word_lm_train_config is not None:
# raise NotImplementedError("Word LM is not implemented")
# if ngpu > 1:
# raise NotImplementedError("only single GPU decoding is supported")
#
# logging.basicConfig(
# level=log_level,
# format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
# )
#
# if ngpu >= 1 and torch.cuda.is_available():
# device = "cuda"
# else:
# device = "cpu"
#
# # 1. Set random-seed
# set_all_random_seed(seed)
#
# # 2. Build speech2text
# speech2text_kwargs = dict(
# asr_train_config=asr_train_config,
# asr_model_file=asr_model_file,
# cmvn_file=cmvn_file,
# lm_train_config=lm_train_config,
# lm_file=lm_file,
# token_type=token_type,
# bpemodel=bpemodel,
# device=device,
# maxlenratio=maxlenratio,
# minlenratio=minlenratio,
# dtype=dtype,
# beam_size=beam_size,
# ctc_weight=ctc_weight,
# lm_weight=lm_weight,
# ngram_weight=ngram_weight,
# penalty=penalty,
# nbest=nbest,
# frontend_conf=frontend_conf,
# )
# speech2text = Speech2Text(**speech2text_kwargs)
#
# # 3. Build data-iterator
# loader = ASRTask.build_streaming_iterator(
# data_path_and_name_and_type,
# dtype=dtype,
# batch_size=batch_size,
# key_file=key_file,
# num_workers=num_workers,
# preprocess_fn=ASRTask.build_preprocess_fn(speech2text.asr_train_args, False),
# collate_fn=ASRTask.build_collate_fn(speech2text.asr_train_args, False),
# allow_variable_data_keys=allow_variable_data_keys,
# inference=True,
# )
#
# forward_time_total = 0.0
# length_total = 0.0
# finish_count = 0
# file_count = 1
# # 7 .Start for-loop
# # FIXME(kamo): The output format should be discussed about
# asr_result_list = []
# if output_dir is not None:
# writer = DatadirWriter(output_dir)
# else:
# writer = None
#
# for keys, batch in loader:
# assert isinstance(batch, dict), type(batch)
# assert all(isinstance(s, str) for s in keys), keys
# _bs = len(next(iter(batch.values())))
# assert len(keys) == _bs, f"{len(keys)} != {_bs}"
# # batch = {k: v for k, v in batch.items() if not k.endswith("_lengths")}
#
# logging.info("decoding, utt_id: {}".format(keys))
# # N-best list of (text, token, token_int, hyp_object)
#
# time_beg = time.time()
# results = speech2text(**batch)
# if len(results) < 1:
# hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[])
# results = [[" ", ["sil"], [2], hyp, 10, 6]] * nbest
# time_end = time.time()
# forward_time = time_end - time_beg
# lfr_factor = results[0][-1]
# length = results[0][-2]
# forward_time_total += forward_time
# length_total += length
# logging.info(
# "decoding, feature length: {}, forward_time: {:.4f}, rtf: {:.4f}".
# format(length, forward_time, 100 * forward_time / (length*lfr_factor)))
#
# for batch_id in range(_bs):
# result = [results[batch_id][:-2]]
#
# key = keys[batch_id]
# for n, (text, token, token_int, hyp) in zip(range(1, nbest + 1), result):
# # Create a directory: outdir/{n}best_recog
# if writer is not None:
# ibest_writer = writer[f"{n}best_recog"]
#
# # Write the result to each file
# ibest_writer["token"][key] = " ".join(token)
# ibest_writer["token_int"][key] = " ".join(map(str, token_int))
# ibest_writer["score"][key] = str(hyp.score)
#
# if text is not None:
# text_postprocessed = postprocess_utils.sentence_postprocess(token)
# item = {'key': key, 'value': text_postprocessed}
# asr_result_list.append(item)
# finish_count += 1
# # asr_utils.print_progress(finish_count / file_count)
# if writer is not None:
# ibest_writer["text"][key] = text
#
# logging.info("decoding, utt: {}, predictions: {}".format(key, text))
#
# logging.info("decoding, feature length total: {}, forward_time total: {:.4f}, rtf avg: {:.4f}".
# format(length_total, forward_time_total, 100 * forward_time_total / (length_total*lfr_factor)))
# return asr_result_list
def inference(
maxlenratio: float,
minlenratio: float,

View File

@ -40,18 +40,10 @@ from funasr.models.frontend.wav_frontend import WavFrontend
from funasr.tasks.vad import VADTask
from funasr.utils.timestamp_tools import time_stamp_lfr6
from funasr.bin.punctuation_infer import Text2Punc
from funasr.torch_utils.forward_adaptor import ForwardAdaptor
from funasr.datasets.preprocessor import CommonPreprocessor
from funasr.punctuation.text_preprocessor import split_to_mini_sentence
header_colors = '\033[95m'
end_colors = '\033[0m'
global_asr_language: str = 'zh-cn'
global_sample_rate: Union[int, Dict[Any, int]] = {
'audio_fs': 16000,
'model_fs': 16000
}
class Speech2Text:
"""Speech2Text class

View File

@ -272,150 +272,6 @@ class Speech2Text:
return results
# def inference(
# maxlenratio: float,
# minlenratio: float,
# batch_size: int,
# beam_size: int,
# ngpu: int,
# ctc_weight: float,
# lm_weight: float,
# penalty: float,
# log_level: Union[int, str],
# data_path_and_name_and_type,
# asr_train_config: Optional[str],
# asr_model_file: Optional[str],
# ngram_file: Optional[str] = None,
# cmvn_file: Optional[str] = None,
# raw_inputs: Union[np.ndarray, torch.Tensor] = None,
# lm_train_config: Optional[str] = None,
# lm_file: Optional[str] = None,
# token_type: Optional[str] = None,
# key_file: Optional[str] = None,
# word_lm_train_config: Optional[str] = None,
# bpemodel: Optional[str] = None,
# allow_variable_data_keys: bool = False,
# streaming: bool = False,
# output_dir: Optional[str] = None,
# dtype: str = "float32",
# seed: int = 0,
# ngram_weight: float = 0.9,
# nbest: int = 1,
# num_workers: int = 1,
# token_num_relax: int = 1,
# decoding_ind: int = 0,
# decoding_mode: str = "model1",
# **kwargs,
# ):
# assert check_argument_types()
# if batch_size > 1:
# raise NotImplementedError("batch decoding is not implemented")
# if word_lm_train_config is not None:
# raise NotImplementedError("Word LM is not implemented")
# if ngpu > 1:
# raise NotImplementedError("only single GPU decoding is supported")
#
# logging.basicConfig(
# level=log_level,
# format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
# )
#
# if ngpu >= 1 and torch.cuda.is_available():
# device = "cuda"
# else:
# device = "cpu"
#
# # 1. Set random-seed
# set_all_random_seed(seed)
#
# # 2. Build speech2text
# speech2text_kwargs = dict(
# asr_train_config=asr_train_config,
# asr_model_file=asr_model_file,
# cmvn_file=cmvn_file,
# lm_train_config=lm_train_config,
# lm_file=lm_file,
# ngram_file=ngram_file,
# token_type=token_type,
# bpemodel=bpemodel,
# device=device,
# maxlenratio=maxlenratio,
# minlenratio=minlenratio,
# dtype=dtype,
# beam_size=beam_size,
# ctc_weight=ctc_weight,
# lm_weight=lm_weight,
# ngram_weight=ngram_weight,
# penalty=penalty,
# nbest=nbest,
# streaming=streaming,
# token_num_relax=token_num_relax,
# decoding_ind=decoding_ind,
# decoding_mode=decoding_mode,
# )
# speech2text = Speech2Text(**speech2text_kwargs)
#
# # 3. Build data-iterator
# loader = ASRTask.build_streaming_iterator(
# data_path_and_name_and_type,
# dtype=dtype,
# batch_size=batch_size,
# key_file=key_file,
# num_workers=num_workers,
# preprocess_fn=ASRTask.build_preprocess_fn(speech2text.asr_train_args, False),
# collate_fn=ASRTask.build_collate_fn(speech2text.asr_train_args, False),
# allow_variable_data_keys=allow_variable_data_keys,
# inference=True,
# )
#
# finish_count = 0
# file_count = 1
# # 7 .Start for-loop
# # FIXME(kamo): The output format should be discussed about
# asr_result_list = []
# if output_dir is not None:
# writer = DatadirWriter(output_dir)
# else:
# writer = None
#
# for keys, batch in loader:
# assert isinstance(batch, dict), type(batch)
# assert all(isinstance(s, str) for s in keys), keys
# _bs = len(next(iter(batch.values())))
# assert len(keys) == _bs, f"{len(keys)} != {_bs}"
# #batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
#
# # N-best list of (text, token, token_int, hyp_object)
# try:
# results = speech2text(**batch)
# except TooShortUttError as e:
# logging.warning(f"Utterance {keys} {e}")
# hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[])
# results = [[" ", ["sil"], [2], hyp]] * nbest
#
# # Only supporting batch_size==1
# key = keys[0]
# logging.info(f"Utterance: {key}")
# for n, (text, token, token_int, hyp) in zip(range(1, nbest + 1), results):
# # Create a directory: outdir/{n}best_recog
# if writer is not None:
# ibest_writer = writer[f"{n}best_recog"]
#
# # Write the result to each file
# ibest_writer["token"][key] = " ".join(token)
# ibest_writer["token_int"][key] = " ".join(map(str, token_int))
# ibest_writer["score"][key] = str(hyp.score)
#
# if text is not None:
# text_postprocessed = postprocess_utils.sentence_postprocess(token)
# item = {'key': key, 'value': text_postprocessed}
# asr_result_list.append(item)
# finish_count += 1
# asr_utils.print_progress(finish_count / file_count)
# if writer is not None:
# ibest_writer["text"][key] = text
# return asr_result_list
def inference(
maxlenratio: float,
minlenratio: float,

View File

@ -214,6 +214,7 @@ def inference_modelscope(
data_path_and_name_and_type: Sequence[Tuple[str, str, str]] = None,
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
output_dir_v2: Optional[str] = None,
fs: dict = None,
param_dict: Optional[dict] = None,
):
logging.info("param_dict: {}".format(param_dict))

View File

@ -116,90 +116,6 @@ class Speech2VadSegment:
return segments
#def inference(
# batch_size: int,
# ngpu: int,
# log_level: Union[int, str],
# data_path_and_name_and_type,
# vad_infer_config: Optional[str],
# vad_model_file: Optional[str],
# vad_cmvn_file: Optional[str] = None,
# raw_inputs: Union[np.ndarray, torch.Tensor] = None,
# key_file: Optional[str] = None,
# allow_variable_data_keys: bool = False,
# output_dir: Optional[str] = None,
# dtype: str = "float32",
# seed: int = 0,
# num_workers: int = 1,
# fs: Union[dict, int] = 16000,
# **kwargs,
#):
# assert check_argument_types()
# if batch_size > 1:
# raise NotImplementedError("batch decoding is not implemented")
# if ngpu > 1:
# raise NotImplementedError("only single GPU decoding is supported")
#
# logging.basicConfig(
# level=log_level,
# format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
# )
#
# if ngpu >= 1 and torch.cuda.is_available():
# device = "cuda"
# else:
# device = "cpu"
#
# # 1. Set random-seed
# set_all_random_seed(seed)
#
# # 2. Build speech2vadsegment
# speech2vadsegment_kwargs = dict(
# vad_infer_config=vad_infer_config,
# vad_model_file=vad_model_file,
# vad_cmvn_file=vad_cmvn_file,
# device=device,
# dtype=dtype,
# )
# logging.info("speech2vadsegment_kwargs: {}".format(speech2vadsegment_kwargs))
# speech2vadsegment = Speech2VadSegment(**speech2vadsegment_kwargs)
# # 3. Build data-iterator
# loader = VADTask.build_streaming_iterator(
# data_path_and_name_and_type,
# dtype=dtype,
# batch_size=batch_size,
# key_file=key_file,
# num_workers=num_workers,
# preprocess_fn=VADTask.build_preprocess_fn(speech2vadsegment.vad_infer_args, False),
# collate_fn=VADTask.build_collate_fn(speech2vadsegment.vad_infer_args, False),
# allow_variable_data_keys=allow_variable_data_keys,
# inference=True,
# )
#
# finish_count = 0
# file_count = 1
# # 7 .Start for-loop
# # FIXME(kamo): The output format should be discussed about
# if output_dir is not None:
# writer = DatadirWriter(output_dir)
# else:
# writer = None
#
# vad_results = []
# for keys, batch in loader:
# assert isinstance(batch, dict), type(batch)
# assert all(isinstance(s, str) for s in keys), keys
# _bs = len(next(iter(batch.values())))
# assert len(keys) == _bs, f"{len(keys)} != {_bs}"
# # batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
#
# # do vad segment
# results = speech2vadsegment(**batch)
# for i, _ in enumerate(keys):
# item = {'key': keys[i], 'value': results[i]}
# vad_results.append(item)
#
# return vad_results
def inference(