mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
Merge pull request #66 from alibaba-damo-academy/dev_lzr
add infer_after_finetune in paraformer-large-vad-punc-model
This commit is contained in:
commit
c6360e9fe1
@ -28,3 +28,19 @@ Or you can use the finetuned model for inference directly.
|
||||
```python
|
||||
python infer.py
|
||||
```
|
||||
|
||||
### Inference using local finetuned model
|
||||
|
||||
- Modify inference related parameters in `infer_after_finetune.py`
|
||||
- <strong>output_dir:</strong> # result dir
|
||||
- <strong>data_dir:</strong> # the dataset dir needs to include `test/wav.scp`. If `test/text` is also exists, CER will be computed
|
||||
- <strong>decoding_model_name:</strong> # set the checkpoint name for decoding, e.g., `valid.cer_ctc.ave.pth`
|
||||
|
||||
- Then you can run the pipeline to finetune with:
|
||||
```python
|
||||
python infer_after_finetune.py
|
||||
```
|
||||
|
||||
- Results
|
||||
|
||||
The decoding results can be found in `$output_dir/decoding_results/text.cer`, which includes recognition results of each sample and the CER metric of the whole test set.
|
||||
|
||||
@ -0,0 +1,57 @@
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
from funasr.utils.compute_wer import compute_wer
|
||||
|
||||
|
||||
def modelscope_infer_after_finetune(params):
|
||||
# prepare for decoding
|
||||
if not os.path.exists(os.path.join(params["output_dir"], "punc")):
|
||||
os.makedirs(os.path.join(params["output_dir"], "punc"))
|
||||
if not os.path.exists(os.path.join(params["output_dir"], "vad")):
|
||||
os.makedirs(os.path.join(params["output_dir"], "vad"))
|
||||
pretrained_model_path = os.path.join(os.environ["HOME"], ".cache/modelscope/hub", params["modelscope_model_name"])
|
||||
for file_name in params["required_files"]:
|
||||
if file_name == "configuration.json":
|
||||
with open(os.path.join(pretrained_model_path, file_name)) as f:
|
||||
config_dict = json.load(f)
|
||||
config_dict["model"]["am_model_name"] = params["decoding_model_name"]
|
||||
with open(os.path.join(params["output_dir"], "configuration.json"), "w") as f:
|
||||
json.dump(config_dict, f, indent=4, separators=(',', ': '))
|
||||
else:
|
||||
shutil.copy(os.path.join(pretrained_model_path, file_name),
|
||||
os.path.join(params["output_dir"], file_name))
|
||||
decoding_path = os.path.join(params["output_dir"], "decode_results")
|
||||
if os.path.exists(decoding_path):
|
||||
shutil.rmtree(decoding_path)
|
||||
os.mkdir(decoding_path)
|
||||
|
||||
# decoding
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model=params["output_dir"],
|
||||
output_dir=decoding_path,
|
||||
batch_size=64
|
||||
)
|
||||
audio_in = os.path.join(params["data_dir"], "wav.scp")
|
||||
inference_pipeline(audio_in=audio_in)
|
||||
|
||||
# computer CER if GT text is set
|
||||
text_in = os.path.join(params["data_dir"], "text")
|
||||
if text_in is not None:
|
||||
text_proc_file = os.path.join(decoding_path, "1best_recog/token")
|
||||
compute_wer(text_in, text_proc_file, os.path.join(decoding_path, "text.cer"))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
params = {}
|
||||
params["modelscope_model_name"] = "damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
|
||||
params["required_files"] = ["am.mvn", "decoding.yaml", "configuration.json", "punc/punc.pb", "punc/punc.yaml", "vad/vad.mvn", "vad/vad.pb", "vad/vad.yaml"]
|
||||
params["output_dir"] = "./checkpoint"
|
||||
params["data_dir"] = "./data/test"
|
||||
params["decoding_model_name"] = "valid.acc.ave_10best.pth"
|
||||
modelscope_infer_after_finetune(params)
|
||||
Loading…
Reference in New Issue
Block a user