mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
paraformer streaming onnx
This commit is contained in:
parent
e5dd9cb090
commit
836bf6417e
168
funasr/models/paraformer_streaming/export_meta.py
Normal file
168
funasr/models/paraformer_streaming/export_meta.py
Normal file
@ -0,0 +1,168 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- encoding: utf-8 -*-
|
||||
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
||||
# MIT License (https://opensource.org/licenses/MIT)
|
||||
|
||||
import types
|
||||
import torch
|
||||
from funasr.register import tables
|
||||
|
||||
|
||||
def export_rebuild_model(model, **kwargs):
|
||||
model.device = kwargs.get("device")
|
||||
is_onnx = kwargs.get("type", "onnx") == "onnx"
|
||||
encoder_class = tables.encoder_classes.get(kwargs["encoder"]+"Export")
|
||||
model.encoder = encoder_class(model.encoder, onnx=is_onnx)
|
||||
|
||||
predictor_class = tables.predictor_classes.get(kwargs["predictor"]+"Export")
|
||||
model.predictor = predictor_class(model.predictor, onnx=is_onnx)
|
||||
|
||||
|
||||
decoder_class = tables.decoder_classes.get(kwargs["decoder"]+"Export")
|
||||
model.decoder = decoder_class(model.decoder, onnx=is_onnx)
|
||||
|
||||
from funasr.utils.torch_function import sequence_mask
|
||||
model.make_pad_mask = sequence_mask(kwargs['max_seq_len'], flip=False)
|
||||
|
||||
model.forward = types.MethodType(export_forward, model)
|
||||
model.export_dummy_inputs = types.MethodType(export_dummy_inputs, model)
|
||||
model.export_input_names = types.MethodType(export_input_names, model)
|
||||
model.export_output_names = types.MethodType(export_output_names, model)
|
||||
model.export_dynamic_axes = types.MethodType(export_dynamic_axes, model)
|
||||
model.export_name = types.MethodType(export_name, model)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def export_rebuild_model(model, **kwargs):
|
||||
# self.device = kwargs.get("device")
|
||||
is_onnx = kwargs.get("type", "onnx") == "onnx"
|
||||
encoder_class = tables.encoder_classes.get(kwargs["encoder"] + "Export")
|
||||
model.encoder = encoder_class(model.encoder, onnx=is_onnx)
|
||||
|
||||
predictor_class = tables.predictor_classes.get(kwargs["predictor"] + "Export")
|
||||
model.predictor = predictor_class(model.predictor, onnx=is_onnx)
|
||||
|
||||
if kwargs["decoder"] == "ParaformerSANMDecoder":
|
||||
kwargs["decoder"] = "ParaformerSANMDecoderOnline"
|
||||
decoder_class = tables.decoder_classes.get(kwargs["decoder"] + "Export")
|
||||
model.decoder = decoder_class(model.decoder, onnx=is_onnx)
|
||||
|
||||
from funasr.utils.torch_function import sequence_mask
|
||||
|
||||
model.make_pad_mask = sequence_mask(max_seq_len=None, flip=False)
|
||||
|
||||
import copy
|
||||
import types
|
||||
encoder_model = copy.copy(model)
|
||||
decoder_model = copy.copy(model)
|
||||
|
||||
# encoder
|
||||
encoder_model.forward = types.MethodType(export_encoder_forward, encoder_model)
|
||||
encoder_model.export_dummy_inputs = types.MethodType(export_encoder_dummy_inputs, encoder_model)
|
||||
encoder_model.export_input_names = types.MethodType(export_encoder_input_names, encoder_model)
|
||||
encoder_model.export_output_names = types.MethodType(export_encoder_output_names, encoder_model)
|
||||
encoder_model.export_dynamic_axes = types.MethodType(export_encoder_dynamic_axes, encoder_model)
|
||||
encoder_model.export_name = types.MethodType(export_encoder_name, encoder_model)
|
||||
|
||||
# decoder
|
||||
decoder_model.forward = types.MethodType(export_decoder_forward, decoder_model)
|
||||
decoder_model.export_dummy_inputs = types.MethodType(export_decoder_dummy_inputs, decoder_model)
|
||||
decoder_model.export_input_names = types.MethodType(export_decoder_input_names, decoder_model)
|
||||
decoder_model.export_output_names = types.MethodType(export_decoder_output_names, decoder_model)
|
||||
decoder_model.export_dynamic_axes = types.MethodType(export_decoder_dynamic_axes, decoder_model)
|
||||
decoder_model.export_name = types.MethodType(export_decoder_name, decoder_model)
|
||||
|
||||
return encoder_model, decoder_model
|
||||
|
||||
|
||||
def export_encoder_forward(
|
||||
self,
|
||||
speech: torch.Tensor,
|
||||
speech_lengths: torch.Tensor,
|
||||
):
|
||||
# a. To device
|
||||
batch = {"speech": speech, "speech_lengths": speech_lengths, "online": True}
|
||||
# batch = to_device(batch, device=self.device)
|
||||
|
||||
enc, enc_len = self.encoder(**batch)
|
||||
mask = self.make_pad_mask(enc_len)[:, None, :]
|
||||
alphas, _ = self.predictor.forward_cnn(enc, mask)
|
||||
|
||||
return enc, enc_len, alphas
|
||||
|
||||
|
||||
def export_encoder_dummy_inputs(self):
|
||||
speech = torch.randn(2, 30, 560)
|
||||
speech_lengths = torch.tensor([6, 30], dtype=torch.int32)
|
||||
return (speech, speech_lengths)
|
||||
|
||||
|
||||
def export_encoder_input_names(self):
|
||||
return ['speech', 'speech_lengths']
|
||||
|
||||
|
||||
def export_encoder_output_names(self):
|
||||
return ['enc', 'enc_len', 'alphas']
|
||||
|
||||
|
||||
def export_encoder_dynamic_axes(self):
|
||||
return {
|
||||
'speech': {
|
||||
0: 'batch_size',
|
||||
1: 'feats_length'
|
||||
},
|
||||
'speech_lengths': {
|
||||
0: 'batch_size',
|
||||
},
|
||||
'enc': {
|
||||
0: 'batch_size',
|
||||
1: 'feats_length'
|
||||
},
|
||||
'enc_len': {
|
||||
0: 'batch_size',
|
||||
},
|
||||
'alphas': {
|
||||
0: 'batch_size',
|
||||
1: 'feats_length'
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def export_encoder_name(self):
|
||||
return "model.onnx"
|
||||
|
||||
|
||||
def export_decoder_forward(
|
||||
self,
|
||||
enc: torch.Tensor,
|
||||
enc_len: torch.Tensor,
|
||||
acoustic_embeds: torch.Tensor,
|
||||
acoustic_embeds_len: torch.Tensor,
|
||||
*args,
|
||||
):
|
||||
decoder_out, out_caches = self.decoder(enc, enc_len, acoustic_embeds, acoustic_embeds_len, *args)
|
||||
sample_ids = decoder_out.argmax(dim=-1)
|
||||
|
||||
return decoder_out, sample_ids, out_caches
|
||||
|
||||
|
||||
def export_decoder_dummy_inputs(self):
|
||||
dummy_inputs = self.decoder.get_dummy_inputs(enc_size=self.encoder._output_size)
|
||||
return dummy_inputs
|
||||
|
||||
|
||||
def export_decoder_input_names(self):
|
||||
return self.decoder.get_input_names()
|
||||
|
||||
|
||||
def export_decoder_output_names(self):
|
||||
return self.decoder.get_output_names()
|
||||
|
||||
|
||||
def export_decoder_dynamic_axes(self):
|
||||
return self.decoder.get_dynamic_axes()
|
||||
|
||||
|
||||
def export_decoder_name(self):
|
||||
return "decoder.onnx"
|
||||
@ -562,130 +562,8 @@ class ParaformerStreaming(Paraformer):
|
||||
ibest_writer["text"][key[0]] = text_postprocessed
|
||||
|
||||
return result, meta_data
|
||||
|
||||
def export(
|
||||
self,
|
||||
max_seq_len=512,
|
||||
**kwargs,
|
||||
):
|
||||
self.device = kwargs.get("device")
|
||||
is_onnx = kwargs.get("type", "onnx") == "onnx"
|
||||
encoder_class = tables.encoder_classes.get(kwargs["encoder"] + "Export")
|
||||
self.encoder = encoder_class(self.encoder, onnx=is_onnx)
|
||||
|
||||
predictor_class = tables.predictor_classes.get(kwargs["predictor"] + "Export")
|
||||
self.predictor = predictor_class(self.predictor, onnx=is_onnx)
|
||||
|
||||
if kwargs["decoder"] == "ParaformerSANMDecoder":
|
||||
kwargs["decoder"] = "ParaformerSANMDecoderOnline"
|
||||
decoder_class = tables.decoder_classes.get(kwargs["decoder"] + "Export")
|
||||
self.decoder = decoder_class(self.decoder, onnx=is_onnx)
|
||||
|
||||
from funasr.utils.torch_function import sequence_mask
|
||||
|
||||
|
||||
self.make_pad_mask = sequence_mask(max_seq_len, flip=False)
|
||||
|
||||
import copy
|
||||
import types
|
||||
encoder_model = copy.copy(self)
|
||||
decoder_model = copy.copy(self)
|
||||
|
||||
# encoder
|
||||
encoder_model.forward = types.MethodType(ParaformerStreaming.export_encoder_forward, encoder_model)
|
||||
encoder_model.export_dummy_inputs = types.MethodType(ParaformerStreaming.export_encoder_dummy_inputs, encoder_model)
|
||||
encoder_model.export_input_names = types.MethodType(ParaformerStreaming.export_encoder_input_names, encoder_model)
|
||||
encoder_model.export_output_names = types.MethodType(ParaformerStreaming.export_encoder_output_names, encoder_model)
|
||||
encoder_model.export_dynamic_axes = types.MethodType(ParaformerStreaming.export_encoder_dynamic_axes, encoder_model)
|
||||
encoder_model.export_name = types.MethodType(ParaformerStreaming.export_encoder_name, encoder_model)
|
||||
|
||||
# decoder
|
||||
decoder_model.forward = types.MethodType(ParaformerStreaming.export_decoder_forward, decoder_model)
|
||||
decoder_model.export_dummy_inputs = types.MethodType(ParaformerStreaming.export_decoder_dummy_inputs, decoder_model)
|
||||
decoder_model.export_input_names = types.MethodType(ParaformerStreaming.export_decoder_input_names, decoder_model)
|
||||
decoder_model.export_output_names = types.MethodType(ParaformerStreaming.export_decoder_output_names, decoder_model)
|
||||
decoder_model.export_dynamic_axes = types.MethodType(ParaformerStreaming.export_decoder_dynamic_axes, decoder_model)
|
||||
decoder_model.export_name = types.MethodType(ParaformerStreaming.export_decoder_name, decoder_model)
|
||||
|
||||
return encoder_model, decoder_model
|
||||
|
||||
def export_encoder_forward(
|
||||
self,
|
||||
speech: torch.Tensor,
|
||||
speech_lengths: torch.Tensor,
|
||||
):
|
||||
# a. To device
|
||||
batch = {"speech": speech, "speech_lengths": speech_lengths, "online": True}
|
||||
# batch = to_device(batch, device=self.device)
|
||||
|
||||
enc, enc_len = self.encoder(**batch)
|
||||
mask = self.make_pad_mask(enc_len)[:, None, :]
|
||||
alphas, _ = self.predictor.forward_cnn(enc, mask)
|
||||
|
||||
return enc, enc_len, alphas
|
||||
|
||||
def export_encoder_dummy_inputs(self):
|
||||
speech = torch.randn(2, 30, 560)
|
||||
speech_lengths = torch.tensor([6, 30], dtype=torch.int32)
|
||||
return (speech, speech_lengths)
|
||||
|
||||
def export_encoder_input_names(self):
|
||||
return ['speech', 'speech_lengths']
|
||||
|
||||
def export_encoder_output_names(self):
|
||||
return ['enc', 'enc_len', 'alphas']
|
||||
|
||||
def export_encoder_dynamic_axes(self):
|
||||
return {
|
||||
'speech': {
|
||||
0: 'batch_size',
|
||||
1: 'feats_length'
|
||||
},
|
||||
'speech_lengths': {
|
||||
0: 'batch_size',
|
||||
},
|
||||
'enc': {
|
||||
0: 'batch_size',
|
||||
1: 'feats_length'
|
||||
},
|
||||
'enc_len': {
|
||||
0: 'batch_size',
|
||||
},
|
||||
'alphas': {
|
||||
0: 'batch_size',
|
||||
1: 'feats_length'
|
||||
},
|
||||
}
|
||||
|
||||
def export_encoder_name(self):
|
||||
return "model.onnx"
|
||||
|
||||
def export_decoder_forward(
|
||||
self,
|
||||
enc: torch.Tensor,
|
||||
enc_len: torch.Tensor,
|
||||
acoustic_embeds: torch.Tensor,
|
||||
acoustic_embeds_len: torch.Tensor,
|
||||
*args,
|
||||
):
|
||||
decoder_out, out_caches = self.decoder(enc, enc_len, acoustic_embeds, acoustic_embeds_len, *args)
|
||||
sample_ids = decoder_out.argmax(dim=-1)
|
||||
|
||||
return decoder_out, sample_ids, out_caches
|
||||
|
||||
def export_decoder_dummy_inputs(self):
|
||||
dummy_inputs = self.decoder.get_dummy_inputs(enc_size=self.encoder._output_size)
|
||||
return dummy_inputs
|
||||
|
||||
def export_decoder_input_names(self):
|
||||
|
||||
return self.decoder.get_input_names()
|
||||
|
||||
def export_decoder_output_names(self):
|
||||
|
||||
return self.decoder.get_output_names()
|
||||
|
||||
def export_decoder_dynamic_axes(self):
|
||||
return self.decoder.get_dynamic_axes()
|
||||
def export_decoder_name(self):
|
||||
return "decoder.onnx"
|
||||
def export(self, **kwargs):
|
||||
from .export_meta import export_rebuild_model
|
||||
models = export_rebuild_model(model=self, **kwargs)
|
||||
return models
|
||||
Loading…
Reference in New Issue
Block a user