mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
168 lines
5.7 KiB
Python
168 lines
5.7 KiB
Python
#!/usr/bin/env python3
|
|
# -*- encoding: utf-8 -*-
|
|
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
|
# MIT License (https://opensource.org/licenses/MIT)
|
|
|
|
import types
|
|
import torch
|
|
from funasr.register import tables
|
|
|
|
|
|
def export_rebuild_model(model, **kwargs):
|
|
model.device = kwargs.get("device")
|
|
is_onnx = kwargs.get("type", "onnx") == "onnx"
|
|
encoder_class = tables.encoder_classes.get(kwargs["encoder"]+"Export")
|
|
model.encoder = encoder_class(model.encoder, onnx=is_onnx)
|
|
|
|
predictor_class = tables.predictor_classes.get(kwargs["predictor"]+"Export")
|
|
model.predictor = predictor_class(model.predictor, onnx=is_onnx)
|
|
|
|
|
|
decoder_class = tables.decoder_classes.get(kwargs["decoder"]+"Export")
|
|
model.decoder = decoder_class(model.decoder, onnx=is_onnx)
|
|
|
|
from funasr.utils.torch_function import sequence_mask
|
|
model.make_pad_mask = sequence_mask(kwargs['max_seq_len'], flip=False)
|
|
|
|
model.forward = types.MethodType(export_forward, model)
|
|
model.export_dummy_inputs = types.MethodType(export_dummy_inputs, model)
|
|
model.export_input_names = types.MethodType(export_input_names, model)
|
|
model.export_output_names = types.MethodType(export_output_names, model)
|
|
model.export_dynamic_axes = types.MethodType(export_dynamic_axes, model)
|
|
model.export_name = types.MethodType(export_name, model)
|
|
|
|
return model
|
|
|
|
|
|
def export_rebuild_model(model, **kwargs):
|
|
# self.device = kwargs.get("device")
|
|
is_onnx = kwargs.get("type", "onnx") == "onnx"
|
|
encoder_class = tables.encoder_classes.get(kwargs["encoder"] + "Export")
|
|
model.encoder = encoder_class(model.encoder, onnx=is_onnx)
|
|
|
|
predictor_class = tables.predictor_classes.get(kwargs["predictor"] + "Export")
|
|
model.predictor = predictor_class(model.predictor, onnx=is_onnx)
|
|
|
|
if kwargs["decoder"] == "ParaformerSANMDecoder":
|
|
kwargs["decoder"] = "ParaformerSANMDecoderOnline"
|
|
decoder_class = tables.decoder_classes.get(kwargs["decoder"] + "Export")
|
|
model.decoder = decoder_class(model.decoder, onnx=is_onnx)
|
|
|
|
from funasr.utils.torch_function import sequence_mask
|
|
|
|
model.make_pad_mask = sequence_mask(max_seq_len=None, flip=False)
|
|
|
|
import copy
|
|
import types
|
|
encoder_model = copy.copy(model)
|
|
decoder_model = copy.copy(model)
|
|
|
|
# encoder
|
|
encoder_model.forward = types.MethodType(export_encoder_forward, encoder_model)
|
|
encoder_model.export_dummy_inputs = types.MethodType(export_encoder_dummy_inputs, encoder_model)
|
|
encoder_model.export_input_names = types.MethodType(export_encoder_input_names, encoder_model)
|
|
encoder_model.export_output_names = types.MethodType(export_encoder_output_names, encoder_model)
|
|
encoder_model.export_dynamic_axes = types.MethodType(export_encoder_dynamic_axes, encoder_model)
|
|
encoder_model.export_name = types.MethodType(export_encoder_name, encoder_model)
|
|
|
|
# decoder
|
|
decoder_model.forward = types.MethodType(export_decoder_forward, decoder_model)
|
|
decoder_model.export_dummy_inputs = types.MethodType(export_decoder_dummy_inputs, decoder_model)
|
|
decoder_model.export_input_names = types.MethodType(export_decoder_input_names, decoder_model)
|
|
decoder_model.export_output_names = types.MethodType(export_decoder_output_names, decoder_model)
|
|
decoder_model.export_dynamic_axes = types.MethodType(export_decoder_dynamic_axes, decoder_model)
|
|
decoder_model.export_name = types.MethodType(export_decoder_name, decoder_model)
|
|
|
|
return encoder_model, decoder_model
|
|
|
|
|
|
def export_encoder_forward(
|
|
self,
|
|
speech: torch.Tensor,
|
|
speech_lengths: torch.Tensor,
|
|
):
|
|
# a. To device
|
|
batch = {"speech": speech, "speech_lengths": speech_lengths, "online": True}
|
|
# batch = to_device(batch, device=self.device)
|
|
|
|
enc, enc_len = self.encoder(**batch)
|
|
mask = self.make_pad_mask(enc_len)[:, None, :]
|
|
alphas, _ = self.predictor.forward_cnn(enc, mask)
|
|
|
|
return enc, enc_len, alphas
|
|
|
|
|
|
def export_encoder_dummy_inputs(self):
|
|
speech = torch.randn(2, 30, 560)
|
|
speech_lengths = torch.tensor([6, 30], dtype=torch.int32)
|
|
return (speech, speech_lengths)
|
|
|
|
|
|
def export_encoder_input_names(self):
|
|
return ['speech', 'speech_lengths']
|
|
|
|
|
|
def export_encoder_output_names(self):
|
|
return ['enc', 'enc_len', 'alphas']
|
|
|
|
|
|
def export_encoder_dynamic_axes(self):
|
|
return {
|
|
'speech': {
|
|
0: 'batch_size',
|
|
1: 'feats_length'
|
|
},
|
|
'speech_lengths': {
|
|
0: 'batch_size',
|
|
},
|
|
'enc': {
|
|
0: 'batch_size',
|
|
1: 'feats_length'
|
|
},
|
|
'enc_len': {
|
|
0: 'batch_size',
|
|
},
|
|
'alphas': {
|
|
0: 'batch_size',
|
|
1: 'feats_length'
|
|
},
|
|
}
|
|
|
|
|
|
def export_encoder_name(self):
|
|
return "model.onnx"
|
|
|
|
|
|
def export_decoder_forward(
|
|
self,
|
|
enc: torch.Tensor,
|
|
enc_len: torch.Tensor,
|
|
acoustic_embeds: torch.Tensor,
|
|
acoustic_embeds_len: torch.Tensor,
|
|
*args,
|
|
):
|
|
decoder_out, out_caches = self.decoder(enc, enc_len, acoustic_embeds, acoustic_embeds_len, *args)
|
|
sample_ids = decoder_out.argmax(dim=-1)
|
|
|
|
return decoder_out, sample_ids, out_caches
|
|
|
|
|
|
def export_decoder_dummy_inputs(self):
|
|
dummy_inputs = self.decoder.get_dummy_inputs(enc_size=self.encoder._output_size)
|
|
return dummy_inputs
|
|
|
|
|
|
def export_decoder_input_names(self):
|
|
return self.decoder.get_input_names()
|
|
|
|
|
|
def export_decoder_output_names(self):
|
|
return self.decoder.get_output_names()
|
|
|
|
|
|
def export_decoder_dynamic_axes(self):
|
|
return self.decoder.get_dynamic_axes()
|
|
|
|
|
|
def export_decoder_name(self):
|
|
return "decoder.onnx" |