mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
docs
This commit is contained in:
parent
c699b484b1
commit
7ebfaac337
@ -102,20 +102,20 @@ print(rec_result)
|
||||
### Inference with multi-thread CPUs or multi GPUs
|
||||
FunASR also offer recipes [egs_modelscope/asr/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs.
|
||||
|
||||
- Setting parameters in `infer.sh`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `data_dir`: the dataset dir needs to include `wav.scp`. If `${data_dir}/text` is also exists, CER will be computed
|
||||
- `output_dir`: output dir of the recognition results
|
||||
- `batch_size`: `64` (Default), batch size of inference on gpu
|
||||
- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference
|
||||
- `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer
|
||||
- `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding
|
||||
- `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models
|
||||
- `checkpoint_name`: only used for infer finetuned models, `valid.cer_ctc.ave.pb` (Default), which checkpoint is used to infer
|
||||
- `decoding_mode`: `normal` (Default), decoding mode for UniASR model(fast、normal、offline)
|
||||
- `hotword_txt`: `None` (Default), hotword file for contextual paraformer model(the hotword file name ends with .txt")
|
||||
#### Settings of `infer.sh`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `data_dir`: the dataset dir needs to include `wav.scp`. If `${data_dir}/text` is also exists, CER will be computed
|
||||
- `output_dir`: output dir of the recognition results
|
||||
- `batch_size`: `64` (Default), batch size of inference on gpu
|
||||
- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference
|
||||
- `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer
|
||||
- `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding
|
||||
- `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models
|
||||
- `checkpoint_name`: only used for infer finetuned models, `valid.cer_ctc.ave.pb` (Default), which checkpoint is used to infer
|
||||
- `decoding_mode`: `normal` (Default), decoding mode for UniASR model(fast、normal、offline)
|
||||
- `hotword_txt`: `None` (Default), hotword file for contextual paraformer model(the hotword file name ends with .txt")
|
||||
|
||||
- Decode with multi GPUs:
|
||||
#### Decode with multi GPUs:
|
||||
```shell
|
||||
bash infer.sh \
|
||||
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
|
||||
@ -125,7 +125,7 @@ FunASR also offer recipes [egs_modelscope/asr/TEMPLATE/infer.sh](https://github.
|
||||
--gpu_inference true \
|
||||
--gpuid_list "0,1"
|
||||
```
|
||||
- Decode with multi-thread CPUs:
|
||||
#### Decode with multi-thread CPUs:
|
||||
```shell
|
||||
bash infer.sh \
|
||||
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
|
||||
@ -135,7 +135,7 @@ FunASR also offer recipes [egs_modelscope/asr/TEMPLATE/infer.sh](https://github.
|
||||
--njob 64
|
||||
```
|
||||
|
||||
- Results
|
||||
#### Results
|
||||
|
||||
The decoding results can be found in `$output_dir/1best_recog/text.cer`, which includes recognition results of each sample and the CER metric of the whole test set.
|
||||
|
||||
|
||||
@ -70,17 +70,17 @@ Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/
|
||||
### Inference with multi-thread CPUs or multi GPUs
|
||||
FunASR also offer recipes [egs_modelscope/punctuation/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/punctuation/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs. It is an offline recipe and only support offline model.
|
||||
|
||||
- Setting parameters in `infer.sh`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `data_dir`: the dataset dir needs to include `punc.txt`
|
||||
- `output_dir`: output dir of the recognition results
|
||||
- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference
|
||||
- `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer
|
||||
- `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding
|
||||
- `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models
|
||||
- `checkpoint_name`: only used for infer finetuned models, `punc.pb` (Default), which checkpoint is used to infer
|
||||
#### Settings of `infer.sh`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `data_dir`: the dataset dir needs to include `punc.txt`
|
||||
- `output_dir`: output dir of the recognition results
|
||||
- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference
|
||||
- `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer
|
||||
- `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding
|
||||
- `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models
|
||||
- `checkpoint_name`: only used for infer finetuned models, `punc.pb` (Default), which checkpoint is used to infer
|
||||
|
||||
- Decode with multi GPUs:
|
||||
#### Decode with multi GPUs:
|
||||
```shell
|
||||
bash infer.sh \
|
||||
--model "damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch" \
|
||||
@ -90,7 +90,7 @@ FunASR also offer recipes [egs_modelscope/punctuation/TEMPLATE/infer.sh](https:/
|
||||
--gpu_inference true \
|
||||
--gpuid_list "0,1"
|
||||
```
|
||||
- Decode with multi-thread CPUs:
|
||||
#### Decode with multi-thread CPUs:
|
||||
```shell
|
||||
bash infer.sh \
|
||||
--model "damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch" \
|
||||
@ -100,7 +100,6 @@ FunASR also offer recipes [egs_modelscope/punctuation/TEMPLATE/infer.sh](https:/
|
||||
--njob 1
|
||||
```
|
||||
|
||||
|
||||
## Finetune with pipeline
|
||||
|
||||
### Quick start
|
||||
|
||||
@ -61,18 +61,18 @@ Timestamp pipeline can also be used after ASR pipeline to compose complete ASR f
|
||||
### Inference with multi-thread CPUs or multi GPUs
|
||||
FunASR also offer recipes [egs_modelscope/tp/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/tp/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs.
|
||||
|
||||
- Setting parameters in `infer.sh`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `data_dir`: the dataset dir **must** include `wav.scp` and `text.txt`
|
||||
- `output_dir`: output dir of the recognition results
|
||||
- `batch_size`: `64` (Default), batch size of inference on gpu
|
||||
- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference
|
||||
- `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer
|
||||
- `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding
|
||||
- `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models
|
||||
- `checkpoint_name`: only used for infer finetuned models, `valid.cer_ctc.ave.pb` (Default), which checkpoint is used to infer
|
||||
#### Settings of `infer.sh`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `data_dir`: the dataset dir **must** include `wav.scp` and `text.txt`
|
||||
- `output_dir`: output dir of the recognition results
|
||||
- `batch_size`: `64` (Default), batch size of inference on gpu
|
||||
- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference
|
||||
- `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer
|
||||
- `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding
|
||||
- `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models
|
||||
- `checkpoint_name`: only used for infer finetuned models, `valid.cer_ctc.ave.pb` (Default), which checkpoint is used to infer
|
||||
|
||||
- Decode with multi GPUs:
|
||||
#### Decode with multi GPUs:
|
||||
```shell
|
||||
bash infer.sh \
|
||||
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
|
||||
@ -82,7 +82,7 @@ FunASR also offer recipes [egs_modelscope/tp/TEMPLATE/infer.sh](https://github.c
|
||||
--gpu_inference true \
|
||||
--gpuid_list "0,1"
|
||||
```
|
||||
- Decode with multi-thread CPUs:
|
||||
#### Decode with multi-thread CPUs:
|
||||
```shell
|
||||
bash infer.sh \
|
||||
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
|
||||
|
||||
@ -69,18 +69,18 @@ Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/
|
||||
### Inference with multi-thread CPUs or multi GPUs
|
||||
FunASR also offer recipes [egs_modelscope/vad/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/vad/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs.
|
||||
|
||||
- Setting parameters in `infer.sh`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `data_dir`: the dataset dir needs to include `wav.scp`
|
||||
- `output_dir`: output dir of the recognition results
|
||||
- `batch_size`: `64` (Default), batch size of inference on gpu
|
||||
- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference
|
||||
- `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer
|
||||
- `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding
|
||||
- `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models
|
||||
- `checkpoint_name`: only used for infer finetuned models, `valid.cer_ctc.ave.pb` (Default), which checkpoint is used to infer
|
||||
#### Settings of `infer.sh`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `data_dir`: the dataset dir needs to include `wav.scp`
|
||||
- `output_dir`: output dir of the recognition results
|
||||
- `batch_size`: `64` (Default), batch size of inference on gpu
|
||||
- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference
|
||||
- `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer
|
||||
- `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding
|
||||
- `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models
|
||||
- `checkpoint_name`: only used for infer finetuned models, `valid.cer_ctc.ave.pb` (Default), which checkpoint is used to infer
|
||||
|
||||
- Decode with multi GPUs:
|
||||
#### Decode with multi GPUs:
|
||||
```shell
|
||||
bash infer.sh \
|
||||
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
|
||||
@ -90,7 +90,7 @@ FunASR also offer recipes [egs_modelscope/vad/TEMPLATE/infer.sh](https://github.
|
||||
--gpu_inference true \
|
||||
--gpuid_list "0,1"
|
||||
```
|
||||
- Decode with multi-thread CPUs:
|
||||
#### Decode with multi-thread CPUs:
|
||||
```shell
|
||||
bash infer.sh \
|
||||
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
|
||||
|
||||
@ -51,12 +51,17 @@ cd funasr/runtime/python/websocket
|
||||
pip install -r requirements_client.txt
|
||||
```
|
||||
|
||||
Start client
|
||||
|
||||
### Start client
|
||||
#### Recording from mircrophone
|
||||
```shell
|
||||
# --chunk_size, "5,10,5"=600ms, "8,8,4"=480ms
|
||||
python ws_client.py --host "127.0.0.1" --port 10096 --chunk_size "5,10,5"
|
||||
```
|
||||
#### Loadding from wav.scp(kaldi style)
|
||||
```shell
|
||||
# --chunk_size, "5,10,5"=600ms, "8,8,4"=480ms
|
||||
python ws_client.py --host "127.0.0.1" --port 10096 --chunk_size "5,10,5" --audio_in "./data/wav.scp"
|
||||
```
|
||||
|
||||
## Acknowledge
|
||||
1. This project is maintained by [FunASR community](https://github.com/alibaba-damo-academy/FunASR).
|
||||
|
||||
Loading…
Reference in New Issue
Block a user