diff --git a/egs_modelscope/asr/TEMPLATE/README.md b/egs_modelscope/asr/TEMPLATE/README.md index 28a31a200..30ae8c990 100644 --- a/egs_modelscope/asr/TEMPLATE/README.md +++ b/egs_modelscope/asr/TEMPLATE/README.md @@ -102,20 +102,20 @@ print(rec_result) ### Inference with multi-thread CPUs or multi GPUs FunASR also offer recipes [egs_modelscope/asr/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs. -- Setting parameters in `infer.sh` - - `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk - - `data_dir`: the dataset dir needs to include `wav.scp`. If `${data_dir}/text` is also exists, CER will be computed - - `output_dir`: output dir of the recognition results - - `batch_size`: `64` (Default), batch size of inference on gpu - - `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference - - `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer - - `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding - - `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models - - `checkpoint_name`: only used for infer finetuned models, `valid.cer_ctc.ave.pb` (Default), which checkpoint is used to infer - - `decoding_mode`: `normal` (Default), decoding mode for UniASR model(fast、normal、offline) - - `hotword_txt`: `None` (Default), hotword file for contextual paraformer model(the hotword file name ends with .txt") +#### Settings of `infer.sh` +- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk +- `data_dir`: the dataset dir needs to include `wav.scp`. If `${data_dir}/text` is also exists, CER will be computed +- `output_dir`: output dir of the recognition results +- `batch_size`: `64` (Default), batch size of inference on gpu +- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference +- `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer +- `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding +- `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models +- `checkpoint_name`: only used for infer finetuned models, `valid.cer_ctc.ave.pb` (Default), which checkpoint is used to infer +- `decoding_mode`: `normal` (Default), decoding mode for UniASR model(fast、normal、offline) +- `hotword_txt`: `None` (Default), hotword file for contextual paraformer model(the hotword file name ends with .txt") -- Decode with multi GPUs: +#### Decode with multi GPUs: ```shell bash infer.sh \ --model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \ @@ -125,7 +125,7 @@ FunASR also offer recipes [egs_modelscope/asr/TEMPLATE/infer.sh](https://github. --gpu_inference true \ --gpuid_list "0,1" ``` -- Decode with multi-thread CPUs: +#### Decode with multi-thread CPUs: ```shell bash infer.sh \ --model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \ @@ -135,7 +135,7 @@ FunASR also offer recipes [egs_modelscope/asr/TEMPLATE/infer.sh](https://github. --njob 64 ``` -- Results +#### Results The decoding results can be found in `$output_dir/1best_recog/text.cer`, which includes recognition results of each sample and the CER metric of the whole test set. diff --git a/egs_modelscope/punctuation/TEMPLATE/README.md b/egs_modelscope/punctuation/TEMPLATE/README.md index 3eaf68a11..dfbe04480 100644 --- a/egs_modelscope/punctuation/TEMPLATE/README.md +++ b/egs_modelscope/punctuation/TEMPLATE/README.md @@ -70,17 +70,17 @@ Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/ ### Inference with multi-thread CPUs or multi GPUs FunASR also offer recipes [egs_modelscope/punctuation/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/punctuation/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs. It is an offline recipe and only support offline model. -- Setting parameters in `infer.sh` - - `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk - - `data_dir`: the dataset dir needs to include `punc.txt` - - `output_dir`: output dir of the recognition results - - `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference - - `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer - - `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding - - `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models - - `checkpoint_name`: only used for infer finetuned models, `punc.pb` (Default), which checkpoint is used to infer +#### Settings of `infer.sh` +- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk +- `data_dir`: the dataset dir needs to include `punc.txt` +- `output_dir`: output dir of the recognition results +- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference +- `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer +- `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding +- `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models +- `checkpoint_name`: only used for infer finetuned models, `punc.pb` (Default), which checkpoint is used to infer -- Decode with multi GPUs: +#### Decode with multi GPUs: ```shell bash infer.sh \ --model "damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch" \ @@ -90,7 +90,7 @@ FunASR also offer recipes [egs_modelscope/punctuation/TEMPLATE/infer.sh](https:/ --gpu_inference true \ --gpuid_list "0,1" ``` -- Decode with multi-thread CPUs: +#### Decode with multi-thread CPUs: ```shell bash infer.sh \ --model "damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch" \ @@ -100,7 +100,6 @@ FunASR also offer recipes [egs_modelscope/punctuation/TEMPLATE/infer.sh](https:/ --njob 1 ``` - ## Finetune with pipeline ### Quick start diff --git a/egs_modelscope/tp/TEMPLATE/README.md b/egs_modelscope/tp/TEMPLATE/README.md index d33d4e6d6..62c35d80a 100644 --- a/egs_modelscope/tp/TEMPLATE/README.md +++ b/egs_modelscope/tp/TEMPLATE/README.md @@ -61,18 +61,18 @@ Timestamp pipeline can also be used after ASR pipeline to compose complete ASR f ### Inference with multi-thread CPUs or multi GPUs FunASR also offer recipes [egs_modelscope/tp/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/tp/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs. -- Setting parameters in `infer.sh` - - `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk - - `data_dir`: the dataset dir **must** include `wav.scp` and `text.txt` - - `output_dir`: output dir of the recognition results - - `batch_size`: `64` (Default), batch size of inference on gpu - - `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference - - `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer - - `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding - - `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models - - `checkpoint_name`: only used for infer finetuned models, `valid.cer_ctc.ave.pb` (Default), which checkpoint is used to infer +#### Settings of `infer.sh` +- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk +- `data_dir`: the dataset dir **must** include `wav.scp` and `text.txt` +- `output_dir`: output dir of the recognition results +- `batch_size`: `64` (Default), batch size of inference on gpu +- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference +- `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer +- `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding +- `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models +- `checkpoint_name`: only used for infer finetuned models, `valid.cer_ctc.ave.pb` (Default), which checkpoint is used to infer -- Decode with multi GPUs: +#### Decode with multi GPUs: ```shell bash infer.sh \ --model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \ @@ -82,7 +82,7 @@ FunASR also offer recipes [egs_modelscope/tp/TEMPLATE/infer.sh](https://github.c --gpu_inference true \ --gpuid_list "0,1" ``` -- Decode with multi-thread CPUs: +#### Decode with multi-thread CPUs: ```shell bash infer.sh \ --model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \ diff --git a/egs_modelscope/vad/TEMPLATE/README.md b/egs_modelscope/vad/TEMPLATE/README.md index 9ad9a1ce2..503b9bf8e 100644 --- a/egs_modelscope/vad/TEMPLATE/README.md +++ b/egs_modelscope/vad/TEMPLATE/README.md @@ -69,18 +69,18 @@ Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/ ### Inference with multi-thread CPUs or multi GPUs FunASR also offer recipes [egs_modelscope/vad/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/vad/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs. -- Setting parameters in `infer.sh` - - `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk - - `data_dir`: the dataset dir needs to include `wav.scp` - - `output_dir`: output dir of the recognition results - - `batch_size`: `64` (Default), batch size of inference on gpu - - `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference - - `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer - - `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding - - `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models - - `checkpoint_name`: only used for infer finetuned models, `valid.cer_ctc.ave.pb` (Default), which checkpoint is used to infer +#### Settings of `infer.sh` +- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk +- `data_dir`: the dataset dir needs to include `wav.scp` +- `output_dir`: output dir of the recognition results +- `batch_size`: `64` (Default), batch size of inference on gpu +- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference +- `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer +- `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding +- `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models +- `checkpoint_name`: only used for infer finetuned models, `valid.cer_ctc.ave.pb` (Default), which checkpoint is used to infer -- Decode with multi GPUs: +#### Decode with multi GPUs: ```shell bash infer.sh \ --model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \ @@ -90,7 +90,7 @@ FunASR also offer recipes [egs_modelscope/vad/TEMPLATE/infer.sh](https://github. --gpu_inference true \ --gpuid_list "0,1" ``` -- Decode with multi-thread CPUs: +#### Decode with multi-thread CPUs: ```shell bash infer.sh \ --model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \ diff --git a/funasr/runtime/python/websocket/README.md b/funasr/runtime/python/websocket/README.md index b6fa9378f..90e04bc44 100644 --- a/funasr/runtime/python/websocket/README.md +++ b/funasr/runtime/python/websocket/README.md @@ -51,12 +51,17 @@ cd funasr/runtime/python/websocket pip install -r requirements_client.txt ``` -Start client - +### Start client +#### Recording from mircrophone ```shell # --chunk_size, "5,10,5"=600ms, "8,8,4"=480ms python ws_client.py --host "127.0.0.1" --port 10096 --chunk_size "5,10,5" ``` +#### Loadding from wav.scp(kaldi style) +```shell +# --chunk_size, "5,10,5"=600ms, "8,8,4"=480ms +python ws_client.py --host "127.0.0.1" --port 10096 --chunk_size "5,10,5" --audio_in "./data/wav.scp" +``` ## Acknowledge 1. This project is maintained by [FunASR community](https://github.com/alibaba-damo-academy/FunASR).