mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
update _hw_repre
This commit is contained in:
parent
26a53fb181
commit
66d3b5c212
@ -19,11 +19,9 @@ from distutils.version import LooseVersion
|
||||
|
||||
from funasr.register import tables
|
||||
from funasr.utils import postprocess_utils
|
||||
from funasr.metrics.compute_acc import th_accuracy
|
||||
from funasr.models.paraformer.model import Paraformer
|
||||
from funasr.utils.datadir_writer import DatadirWriter
|
||||
from funasr.models.paraformer.search import Hypothesis
|
||||
from funasr.models.paraformer.cif_predictor import mae_loss
|
||||
from funasr.train_utils.device_funcs import force_gatherable
|
||||
from funasr.models.bicif_paraformer.model import BiCifParaformer
|
||||
from funasr.losses.label_smoothing_loss import LabelSmoothingLoss
|
||||
@ -76,7 +74,7 @@ class SeacoParaformer(BiCifParaformer, Paraformer):
|
||||
self.lstm_proj = torch.nn.Linear(self.inner_dim*2, self.inner_dim)
|
||||
else:
|
||||
self.lstm_proj = None
|
||||
self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim)
|
||||
# self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim)
|
||||
elif self.bias_encoder_type == 'mean':
|
||||
self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim)
|
||||
else:
|
||||
@ -274,6 +272,8 @@ class SeacoParaformer(BiCifParaformer, Paraformer):
|
||||
hotword_lengths):
|
||||
if self.bias_encoder_type != 'lstm':
|
||||
logging.error("Unsupported bias encoder type")
|
||||
|
||||
'''
|
||||
hw_embed = self.decoder.embed(hotword_pad)
|
||||
hw_embed, (_, _) = self.bias_encoder(hw_embed)
|
||||
if self.lstm_proj is not None:
|
||||
@ -281,26 +281,20 @@ class SeacoParaformer(BiCifParaformer, Paraformer):
|
||||
_ind = np.arange(0, hw_embed.shape[0]).tolist()
|
||||
selected = hw_embed[_ind, [i-1 for i in hotword_lengths.detach().cpu().tolist()]]
|
||||
return selected
|
||||
'''
|
||||
|
||||
'''
|
||||
def calc_predictor(self, encoder_out, encoder_out_lens):
|
||||
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
|
||||
encoder_out.device)
|
||||
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index, pre_token_length2 = self.predictor(encoder_out,
|
||||
None,
|
||||
encoder_out_mask,
|
||||
ignore_id=self.ignore_id)
|
||||
return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index
|
||||
|
||||
|
||||
def calc_predictor_timestamp(self, encoder_out, encoder_out_lens, token_num):
|
||||
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
|
||||
encoder_out.device)
|
||||
ds_alphas, ds_cif_peak, us_alphas, us_peaks = self.predictor.get_upsample_timestamp(encoder_out,
|
||||
encoder_out_mask,
|
||||
token_num)
|
||||
return ds_alphas, ds_cif_peak, us_alphas, us_peaks
|
||||
'''
|
||||
# hw_embed = self.sac_embedding(hotword_pad)
|
||||
hw_embed = self.decoder.embed(hotword_pad)
|
||||
hw_embed = torch.nn.utils.rnn.pack_padded_sequence(hw_embed, hotword_lengths.cpu().type(torch.int64), batch_first=True, enforce_sorted=False)
|
||||
packed_rnn_output, _ = self.bias_encoder(hw_embed)
|
||||
rnn_output = torch.nn.utils.rnn.pad_packed_sequence(packed_rnn_output, batch_first=True)[0]
|
||||
if self.lstm_proj is not None:
|
||||
hw_hidden = self.lstm_proj(rnn_output)
|
||||
else:
|
||||
hw_hidden = rnn_output
|
||||
_ind = np.arange(0, hw_hidden.shape[0]).tolist()
|
||||
selected = hw_hidden[_ind, [i-1 for i in hotword_lengths.detach().cpu().tolist()]]
|
||||
return selected
|
||||
|
||||
def inference(self,
|
||||
data_in,
|
||||
|
||||
Loading…
Reference in New Issue
Block a user