diff --git a/funasr/models/seaco_paraformer/model.py b/funasr/models/seaco_paraformer/model.py index caf2b15c7..0287f56ed 100644 --- a/funasr/models/seaco_paraformer/model.py +++ b/funasr/models/seaco_paraformer/model.py @@ -19,11 +19,9 @@ from distutils.version import LooseVersion from funasr.register import tables from funasr.utils import postprocess_utils -from funasr.metrics.compute_acc import th_accuracy from funasr.models.paraformer.model import Paraformer from funasr.utils.datadir_writer import DatadirWriter from funasr.models.paraformer.search import Hypothesis -from funasr.models.paraformer.cif_predictor import mae_loss from funasr.train_utils.device_funcs import force_gatherable from funasr.models.bicif_paraformer.model import BiCifParaformer from funasr.losses.label_smoothing_loss import LabelSmoothingLoss @@ -76,7 +74,7 @@ class SeacoParaformer(BiCifParaformer, Paraformer): self.lstm_proj = torch.nn.Linear(self.inner_dim*2, self.inner_dim) else: self.lstm_proj = None - self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim) + # self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim) elif self.bias_encoder_type == 'mean': self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim) else: @@ -274,6 +272,8 @@ class SeacoParaformer(BiCifParaformer, Paraformer): hotword_lengths): if self.bias_encoder_type != 'lstm': logging.error("Unsupported bias encoder type") + + ''' hw_embed = self.decoder.embed(hotword_pad) hw_embed, (_, _) = self.bias_encoder(hw_embed) if self.lstm_proj is not None: @@ -281,26 +281,20 @@ class SeacoParaformer(BiCifParaformer, Paraformer): _ind = np.arange(0, hw_embed.shape[0]).tolist() selected = hw_embed[_ind, [i-1 for i in hotword_lengths.detach().cpu().tolist()]] return selected + ''' - ''' - def calc_predictor(self, encoder_out, encoder_out_lens): - encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( - encoder_out.device) - pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index, pre_token_length2 = self.predictor(encoder_out, - None, - encoder_out_mask, - ignore_id=self.ignore_id) - return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index - - - def calc_predictor_timestamp(self, encoder_out, encoder_out_lens, token_num): - encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( - encoder_out.device) - ds_alphas, ds_cif_peak, us_alphas, us_peaks = self.predictor.get_upsample_timestamp(encoder_out, - encoder_out_mask, - token_num) - return ds_alphas, ds_cif_peak, us_alphas, us_peaks - ''' + # hw_embed = self.sac_embedding(hotword_pad) + hw_embed = self.decoder.embed(hotword_pad) + hw_embed = torch.nn.utils.rnn.pack_padded_sequence(hw_embed, hotword_lengths.cpu().type(torch.int64), batch_first=True, enforce_sorted=False) + packed_rnn_output, _ = self.bias_encoder(hw_embed) + rnn_output = torch.nn.utils.rnn.pad_packed_sequence(packed_rnn_output, batch_first=True)[0] + if self.lstm_proj is not None: + hw_hidden = self.lstm_proj(rnn_output) + else: + hw_hidden = rnn_output + _ind = np.arange(0, hw_hidden.shape[0]).tolist() + selected = hw_hidden[_ind, [i-1 for i in hotword_lengths.detach().cpu().tolist()]] + return selected def inference(self, data_in,