fix bug in asr_inference_paraformer_vad_punc and support without punc model

This commit is contained in:
lzr265946 2023-02-08 19:25:14 +08:00
parent bcf6be4c90
commit 5db5950e07

View File

@ -529,8 +529,9 @@ def inference_modelscope(
nbest=nbest,
)
speech2text = Speech2Text(**speech2text_kwargs)
text2punc = Text2Punc(punc_infer_config, punc_model_file, device=device, dtype=dtype)
text2punc = None
if punc_model_file is not None:
text2punc = Text2Punc(punc_infer_config, punc_model_file, device=device, dtype=dtype)
if output_dir is not None:
writer = DatadirWriter(output_dir)
@ -560,38 +561,28 @@ def inference_modelscope(
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
forward_time_total = 0.0
length_total = 0.0
finish_count = 0
file_count = 1
lfr_factor = 6
# 7 .Start for-loop
asr_result_list = []
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
writer = None
if output_path is not None:
writer = DatadirWriter(output_path)
ibest_writer = writer[f"1best_recog"]
# ibest_writer["punc_dict"][""] = " ".join(punc_infer_config.punc_list)
# ibest_writer["token_list"][""] = " ".join(asr_train_config.token_list)
else:
writer = None
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
# batch = {k: v for k, v in batch.items() if not k.endswith("_lengths")}
logging.info("decoding, utt_id: {}".format(keys))
# N-best list of (text, token, token_int, hyp_object)
time_beg = time.time()
vad_results = speech2vadsegment(**batch)
time_end = time.time()
fbanks, vadsegments = vad_results[0], vad_results[1]
for i, segments in enumerate(vadsegments):
result_segments = [["", [], [], ]]
result_segments = [["", [], [], []]]
for j, segment_idx in enumerate(segments):
bed_idx, end_idx = int(segment_idx[0] / 10), int(segment_idx[1] / 10)
segment = fbanks[:, bed_idx:end_idx, :].to(device)
@ -600,76 +591,51 @@ def inference_modelscope(
"end_time": vadsegments[i][j][1]}
results = speech2text(**batch)
if len(results) < 1:
hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[])
results = [[" ", ["sil"], [2], 0, 1, 6]] * nbest
time_end = time.time()
forward_time = time_end - time_beg
lfr_factor = results[0][-1]
length = results[0][-2]
forward_time_total += forward_time
length_total += length
logging.info(
"decoding, feature length: {}, forward_time: {:.4f}, rtf: {:.4f}".
format(length, forward_time, 100 * forward_time / (length * lfr_factor)))
continue
result_cur = [results[0][:-2]]
if j == 0:
result_segments = result_cur
else:
result_segments = [[result_segments[0][i] + result_cur[0][i] for i in range(len(result_cur[0]))]]
key = keys[0]
result = result_segments[0]
text, token, token_int = result[0], result[1], result[2]
time_stamp = None if len(result) < 4 else result[3]
# Create a directory: outdir/{n}best_recog
postprocessed_result = postprocess_utils.sentence_postprocess(token, time_stamp)
text_postprocessed = ""
time_stamp_postprocessed = ""
text_postprocessed_punc = postprocessed_result
if len(postprocessed_result) == 3:
text_postprocessed, time_stamp_postprocessed, word_lists = postprocessed_result[0], \
postprocessed_result[1], \
postprocessed_result[2]
text_postprocessed_punc = ""
if len(word_lists) > 0 and text2punc is not None:
text_postprocessed_punc, punc_id_list = text2punc(word_lists, 20)
item = {'key': key, 'value': text_postprocessed_punc}
if text_postprocessed != "":
item['text_postprocessed'] = text_postprocessed
if time_stamp_postprocessed != "":
item['time_stamp'] = time_stamp_postprocessed
asr_result_list.append(item)
finish_count += 1
# asr_utils.print_progress(finish_count / file_count)
if writer is not None:
# Write the result to each file
ibest_writer["token"][key] = " ".join(token)
ibest_writer["token_int"][key] = " ".join(map(str, token_int))
ibest_writer["vad"][key] = "{}".format(vadsegments)
if text is not None:
postprocessed_result = postprocess_utils.sentence_postprocess(token, time_stamp)
if len(postprocessed_result) == 3:
text_postprocessed, time_stamp_postprocessed, word_lists = postprocessed_result[0], \
postprocessed_result[1], \
postprocessed_result[2]
if len(word_lists) > 0:
text_postprocessed_punc, punc_id_list = text2punc(word_lists, 20)
text_postprocessed_punc_time_stamp = json.dumps({"predictions": text_postprocessed_punc,
"time_stamp": time_stamp_postprocessed},
ensure_ascii=False)
else:
text_postprocessed_punc = ""
punc_id_list = []
text_postprocessed_punc_time_stamp = ""
else:
text_postprocessed = ""
time_stamp_postprocessed = ""
word_lists = ""
text_postprocessed_punc_time_stamp = ""
punc_id_list = ""
text_postprocessed_punc = ""
item = {'key': key, 'value': text_postprocessed_punc, 'text_postprocessed': text_postprocessed,
'time_stamp': time_stamp_postprocessed, 'token': token}
asr_result_list.append(item)
finish_count += 1
# asr_utils.print_progress(finish_count / file_count)
if writer is not None:
ibest_writer["text"][key] = text_postprocessed
ibest_writer["punc_id"][key] = "{}".format(punc_id_list)
ibest_writer["text_with_punc"][key] = text_postprocessed_punc_time_stamp
if time_stamp_postprocessed is not None:
ibest_writer["time_stamp"][key] = "{}".format(time_stamp_postprocessed)
logging.info("decoding, utt: {}, predictions: {}, time_stamp: {}".format(key, text_postprocessed_punc,
time_stamp_postprocessed))
logging.info("decoding, feature length total: {}, forward_time total: {:.4f}, rtf avg: {:.4f}".
format(length_total, forward_time_total, 100 * forward_time_total / (length_total * lfr_factor+1e-6)))
ibest_writer["text"][key] = text_postprocessed
ibest_writer["text_with_punc"][key] = text_postprocessed_punc
if time_stamp_postprocessed is not None:
ibest_writer["time_stamp"][key] = "{}".format(time_stamp_postprocessed)
logging.info("decoding, utt: {}, predictions: {}".format(key, text_postprocessed_punc))
return asr_result_list
return _forward