mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
fix bug in asr_inference_paraformer_vad_punc and support without punc model
This commit is contained in:
parent
bcf6be4c90
commit
5db5950e07
@ -529,8 +529,9 @@ def inference_modelscope(
|
||||
nbest=nbest,
|
||||
)
|
||||
speech2text = Speech2Text(**speech2text_kwargs)
|
||||
|
||||
text2punc = Text2Punc(punc_infer_config, punc_model_file, device=device, dtype=dtype)
|
||||
text2punc = None
|
||||
if punc_model_file is not None:
|
||||
text2punc = Text2Punc(punc_infer_config, punc_model_file, device=device, dtype=dtype)
|
||||
|
||||
if output_dir is not None:
|
||||
writer = DatadirWriter(output_dir)
|
||||
@ -560,38 +561,28 @@ def inference_modelscope(
|
||||
allow_variable_data_keys=allow_variable_data_keys,
|
||||
inference=True,
|
||||
)
|
||||
|
||||
forward_time_total = 0.0
|
||||
length_total = 0.0
|
||||
|
||||
finish_count = 0
|
||||
file_count = 1
|
||||
lfr_factor = 6
|
||||
# 7 .Start for-loop
|
||||
asr_result_list = []
|
||||
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
|
||||
writer = None
|
||||
if output_path is not None:
|
||||
writer = DatadirWriter(output_path)
|
||||
ibest_writer = writer[f"1best_recog"]
|
||||
# ibest_writer["punc_dict"][""] = " ".join(punc_infer_config.punc_list)
|
||||
# ibest_writer["token_list"][""] = " ".join(asr_train_config.token_list)
|
||||
else:
|
||||
writer = None
|
||||
|
||||
|
||||
for keys, batch in loader:
|
||||
assert isinstance(batch, dict), type(batch)
|
||||
assert all(isinstance(s, str) for s in keys), keys
|
||||
_bs = len(next(iter(batch.values())))
|
||||
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
|
||||
# batch = {k: v for k, v in batch.items() if not k.endswith("_lengths")}
|
||||
|
||||
logging.info("decoding, utt_id: {}".format(keys))
|
||||
# N-best list of (text, token, token_int, hyp_object)
|
||||
time_beg = time.time()
|
||||
|
||||
vad_results = speech2vadsegment(**batch)
|
||||
time_end = time.time()
|
||||
fbanks, vadsegments = vad_results[0], vad_results[1]
|
||||
for i, segments in enumerate(vadsegments):
|
||||
result_segments = [["", [], [], ]]
|
||||
result_segments = [["", [], [], []]]
|
||||
for j, segment_idx in enumerate(segments):
|
||||
bed_idx, end_idx = int(segment_idx[0] / 10), int(segment_idx[1] / 10)
|
||||
segment = fbanks[:, bed_idx:end_idx, :].to(device)
|
||||
@ -600,76 +591,51 @@ def inference_modelscope(
|
||||
"end_time": vadsegments[i][j][1]}
|
||||
results = speech2text(**batch)
|
||||
if len(results) < 1:
|
||||
hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[])
|
||||
results = [[" ", ["sil"], [2], 0, 1, 6]] * nbest
|
||||
time_end = time.time()
|
||||
forward_time = time_end - time_beg
|
||||
lfr_factor = results[0][-1]
|
||||
length = results[0][-2]
|
||||
forward_time_total += forward_time
|
||||
length_total += length
|
||||
logging.info(
|
||||
"decoding, feature length: {}, forward_time: {:.4f}, rtf: {:.4f}".
|
||||
format(length, forward_time, 100 * forward_time / (length * lfr_factor)))
|
||||
continue
|
||||
|
||||
result_cur = [results[0][:-2]]
|
||||
if j == 0:
|
||||
result_segments = result_cur
|
||||
else:
|
||||
result_segments = [[result_segments[0][i] + result_cur[0][i] for i in range(len(result_cur[0]))]]
|
||||
|
||||
|
||||
key = keys[0]
|
||||
result = result_segments[0]
|
||||
text, token, token_int = result[0], result[1], result[2]
|
||||
time_stamp = None if len(result) < 4 else result[3]
|
||||
|
||||
# Create a directory: outdir/{n}best_recog
|
||||
|
||||
postprocessed_result = postprocess_utils.sentence_postprocess(token, time_stamp)
|
||||
text_postprocessed = ""
|
||||
time_stamp_postprocessed = ""
|
||||
text_postprocessed_punc = postprocessed_result
|
||||
if len(postprocessed_result) == 3:
|
||||
text_postprocessed, time_stamp_postprocessed, word_lists = postprocessed_result[0], \
|
||||
postprocessed_result[1], \
|
||||
postprocessed_result[2]
|
||||
text_postprocessed_punc = ""
|
||||
if len(word_lists) > 0 and text2punc is not None:
|
||||
text_postprocessed_punc, punc_id_list = text2punc(word_lists, 20)
|
||||
|
||||
item = {'key': key, 'value': text_postprocessed_punc}
|
||||
if text_postprocessed != "":
|
||||
item['text_postprocessed'] = text_postprocessed
|
||||
if time_stamp_postprocessed != "":
|
||||
item['time_stamp'] = time_stamp_postprocessed
|
||||
|
||||
asr_result_list.append(item)
|
||||
finish_count += 1
|
||||
# asr_utils.print_progress(finish_count / file_count)
|
||||
if writer is not None:
|
||||
# Write the result to each file
|
||||
ibest_writer["token"][key] = " ".join(token)
|
||||
ibest_writer["token_int"][key] = " ".join(map(str, token_int))
|
||||
ibest_writer["vad"][key] = "{}".format(vadsegments)
|
||||
|
||||
if text is not None:
|
||||
postprocessed_result = postprocess_utils.sentence_postprocess(token, time_stamp)
|
||||
if len(postprocessed_result) == 3:
|
||||
text_postprocessed, time_stamp_postprocessed, word_lists = postprocessed_result[0], \
|
||||
postprocessed_result[1], \
|
||||
postprocessed_result[2]
|
||||
if len(word_lists) > 0:
|
||||
text_postprocessed_punc, punc_id_list = text2punc(word_lists, 20)
|
||||
text_postprocessed_punc_time_stamp = json.dumps({"predictions": text_postprocessed_punc,
|
||||
"time_stamp": time_stamp_postprocessed},
|
||||
ensure_ascii=False)
|
||||
else:
|
||||
text_postprocessed_punc = ""
|
||||
punc_id_list = []
|
||||
text_postprocessed_punc_time_stamp = ""
|
||||
|
||||
else:
|
||||
text_postprocessed = ""
|
||||
time_stamp_postprocessed = ""
|
||||
word_lists = ""
|
||||
text_postprocessed_punc_time_stamp = ""
|
||||
punc_id_list = ""
|
||||
text_postprocessed_punc = ""
|
||||
|
||||
item = {'key': key, 'value': text_postprocessed_punc, 'text_postprocessed': text_postprocessed,
|
||||
'time_stamp': time_stamp_postprocessed, 'token': token}
|
||||
asr_result_list.append(item)
|
||||
finish_count += 1
|
||||
# asr_utils.print_progress(finish_count / file_count)
|
||||
if writer is not None:
|
||||
ibest_writer["text"][key] = text_postprocessed
|
||||
ibest_writer["punc_id"][key] = "{}".format(punc_id_list)
|
||||
ibest_writer["text_with_punc"][key] = text_postprocessed_punc_time_stamp
|
||||
if time_stamp_postprocessed is not None:
|
||||
ibest_writer["time_stamp"][key] = "{}".format(time_stamp_postprocessed)
|
||||
|
||||
logging.info("decoding, utt: {}, predictions: {}, time_stamp: {}".format(key, text_postprocessed_punc,
|
||||
time_stamp_postprocessed))
|
||||
|
||||
logging.info("decoding, feature length total: {}, forward_time total: {:.4f}, rtf avg: {:.4f}".
|
||||
format(length_total, forward_time_total, 100 * forward_time_total / (length_total * lfr_factor+1e-6)))
|
||||
ibest_writer["text"][key] = text_postprocessed
|
||||
ibest_writer["text_with_punc"][key] = text_postprocessed_punc
|
||||
if time_stamp_postprocessed is not None:
|
||||
ibest_writer["time_stamp"][key] = "{}".format(time_stamp_postprocessed)
|
||||
|
||||
logging.info("decoding, utt: {}, predictions: {}".format(key, text_postprocessed_punc))
|
||||
return asr_result_list
|
||||
return _forward
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user