mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
commit
5d38777dc8
@ -1,6 +1,7 @@
|
||||
/**
|
||||
* Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
||||
* MIT License (https://opensource.org/licenses/MIT)
|
||||
* Collaborators: zhuzizyf(China Telecom Shanghai)
|
||||
*/
|
||||
|
||||
#include <utility>
|
||||
@ -381,10 +382,11 @@ private:
|
||||
int max_end_sil_frame_cnt_thresh;
|
||||
float speech_noise_thres;
|
||||
std::vector<std::vector<float>> scores;
|
||||
int idx_pre_chunk = 0;
|
||||
bool max_time_out;
|
||||
std::vector<float> decibel;
|
||||
std::vector<float> data_buf;
|
||||
std::vector<float> data_buf_all;
|
||||
int data_buf_size = 0;
|
||||
int data_buf_all_size = 0;
|
||||
std::vector<float> waveform;
|
||||
|
||||
void AllResetDetection() {
|
||||
@ -409,10 +411,11 @@ private:
|
||||
max_end_sil_frame_cnt_thresh = vad_opts.max_end_silence_time - vad_opts.speech_to_sil_time_thres;
|
||||
speech_noise_thres = vad_opts.speech_noise_thres;
|
||||
scores.clear();
|
||||
idx_pre_chunk = 0;
|
||||
max_time_out = false;
|
||||
decibel.clear();
|
||||
data_buf.clear();
|
||||
data_buf_all.clear();
|
||||
int data_buf_size = 0;
|
||||
int data_buf_all_size = 0;
|
||||
waveform.clear();
|
||||
ResetDetection();
|
||||
}
|
||||
@ -432,18 +435,17 @@ private:
|
||||
void ComputeDecibel() {
|
||||
int frame_sample_length = int(vad_opts.frame_length_ms * vad_opts.sample_rate / 1000);
|
||||
int frame_shift_length = int(vad_opts.frame_in_ms * vad_opts.sample_rate / 1000);
|
||||
if (data_buf_all.empty()) {
|
||||
data_buf_all = waveform;
|
||||
data_buf = data_buf_all;
|
||||
if (data_buf_all_size == 0) {
|
||||
data_buf_all_size = waveform.size();
|
||||
data_buf_size = data_buf_all_size;
|
||||
} else {
|
||||
data_buf_all.insert(data_buf_all.end(), waveform.begin(), waveform.end());
|
||||
data_buf_all_size += waveform.size();
|
||||
}
|
||||
for (int offset = 0; offset < waveform.size() - frame_sample_length + 1; offset += frame_shift_length) {
|
||||
float sum = 0.0;
|
||||
for (int i = 0; i < frame_sample_length; i++) {
|
||||
sum += waveform[offset + i] * waveform[offset + i];
|
||||
}
|
||||
// float decibel = 10 * log10(sum + 0.000001);
|
||||
this->decibel.push_back(10 * log10(sum + 0.000001));
|
||||
}
|
||||
}
|
||||
@ -451,30 +453,17 @@ private:
|
||||
void ComputeScores(const std::vector<std::vector<float>> &scores) {
|
||||
vad_opts.nn_eval_block_size = scores.size();
|
||||
frm_cnt += scores.size();
|
||||
if (this->scores.empty()) {
|
||||
this->scores = scores; // the first calculation
|
||||
} else {
|
||||
this->scores.insert(this->scores.end(), scores.begin(), scores.end());
|
||||
}
|
||||
this->scores = scores;
|
||||
}
|
||||
|
||||
void PopDataBufTillFrame(int frame_idx) {
|
||||
int frame_sample_length = int(vad_opts.frame_in_ms * vad_opts.sample_rate / 1000);
|
||||
int start_pos=-1;
|
||||
int data_length= data_buf.size();
|
||||
while (data_buf_start_frame < frame_idx) {
|
||||
if (data_length >= frame_sample_length) {
|
||||
if (data_buf_size >= frame_sample_length) {
|
||||
data_buf_start_frame += 1;
|
||||
start_pos= data_buf_start_frame* frame_sample_length;
|
||||
data_length=data_buf_all.size()-start_pos;
|
||||
} else {
|
||||
break;
|
||||
data_buf_size = data_buf_all_size - data_buf_start_frame * frame_sample_length;
|
||||
}
|
||||
}
|
||||
if (start_pos!=-1){
|
||||
data_buf.resize(data_length);
|
||||
std::copy(data_buf_all.begin() + start_pos, data_buf_all.end(), data_buf.begin());
|
||||
}
|
||||
}
|
||||
|
||||
void PopDataToOutputBuf(int start_frm, int frm_cnt, bool first_frm_is_start_point, bool last_frm_is_end_point,
|
||||
@ -487,9 +476,9 @@ private:
|
||||
expected_sample_number += int(extra_sample);
|
||||
}
|
||||
if (end_point_is_sent_end) {
|
||||
expected_sample_number = std::max(expected_sample_number, int(data_buf.size()));
|
||||
expected_sample_number = std::max(expected_sample_number, data_buf_size);
|
||||
}
|
||||
if (data_buf.size() < expected_sample_number) {
|
||||
if (data_buf_size < expected_sample_number) {
|
||||
std::cout << "error in calling pop data_buf\n";
|
||||
}
|
||||
if (output_data_buf.size() == 0 || first_frm_is_start_point) {
|
||||
@ -510,10 +499,10 @@ private:
|
||||
} else {
|
||||
data_to_pop = int(frm_cnt * vad_opts.frame_in_ms * vad_opts.sample_rate / 1000);
|
||||
}
|
||||
if (data_to_pop > int(data_buf.size())) {
|
||||
if (data_to_pop > data_buf_size) {
|
||||
std::cout << "VAD data_to_pop is bigger than data_buf.size()!!!\n";
|
||||
data_to_pop = (int) data_buf.size();
|
||||
expected_sample_number = (int) data_buf.size();
|
||||
data_to_pop = data_buf_size;
|
||||
expected_sample_number = data_buf_size;
|
||||
}
|
||||
cur_seg.doa = 0;
|
||||
for (int sample_cpy_out = 0; sample_cpy_out < data_to_pop; sample_cpy_out++) {
|
||||
@ -619,7 +608,7 @@ private:
|
||||
if (sil_pdf_ids.size() > 0) {
|
||||
std::vector<float> sil_pdf_scores;
|
||||
for (auto sil_pdf_id: sil_pdf_ids) {
|
||||
sil_pdf_scores.push_back(scores[t][sil_pdf_id]);
|
||||
sil_pdf_scores.push_back(scores[t - idx_pre_chunk][sil_pdf_id]);
|
||||
}
|
||||
sum_score = accumulate(sil_pdf_scores.begin(), sil_pdf_scores.end(), 0.0);
|
||||
noise_prob = log(sum_score) * vad_opts.speech_2_noise_ratio;
|
||||
@ -663,6 +652,7 @@ private:
|
||||
frame_state = GetFrameState(frm_cnt - 1 - i);
|
||||
DetectOneFrame(frame_state, frm_cnt - 1 - i, false);
|
||||
}
|
||||
idx_pre_chunk += scores.size();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user