mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
Merge pull request #445 from zhuzizyf/main
Fix memory and performance issues caused by long-term use of streaming VAD
This commit is contained in:
commit
2d2bcdcbd3
@ -229,10 +229,11 @@ class E2EVadModel():
|
||||
self.max_end_sil_frame_cnt_thresh = self.vad_opts.max_end_silence_time - self.vad_opts.speech_to_sil_time_thres
|
||||
self.speech_noise_thres = self.vad_opts.speech_noise_thres
|
||||
self.scores = None
|
||||
self.idx_pre_chunk = 0
|
||||
self.max_time_out = False
|
||||
self.decibel = []
|
||||
self.data_buf = None
|
||||
self.data_buf_all = None
|
||||
self.data_buf_size = 0
|
||||
self.data_buf_all_size = 0
|
||||
self.waveform = None
|
||||
self.ResetDetection()
|
||||
|
||||
@ -259,10 +260,11 @@ class E2EVadModel():
|
||||
self.max_end_sil_frame_cnt_thresh = self.vad_opts.max_end_silence_time - self.vad_opts.speech_to_sil_time_thres
|
||||
self.speech_noise_thres = self.vad_opts.speech_noise_thres
|
||||
self.scores = None
|
||||
self.idx_pre_chunk = 0
|
||||
self.max_time_out = False
|
||||
self.decibel = []
|
||||
self.data_buf = None
|
||||
self.data_buf_all = None
|
||||
self.data_buf_size = 0
|
||||
self.data_buf_all_size = 0
|
||||
self.waveform = None
|
||||
self.ResetDetection()
|
||||
|
||||
@ -280,11 +282,11 @@ class E2EVadModel():
|
||||
def ComputeDecibel(self) -> None:
|
||||
frame_sample_length = int(self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000)
|
||||
frame_shift_length = int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000)
|
||||
if self.data_buf_all is None:
|
||||
self.data_buf_all = self.waveform[0] # self.data_buf is pointed to self.waveform[0]
|
||||
self.data_buf = self.data_buf_all
|
||||
if self.data_buf_all_size == 0:
|
||||
self.data_buf_all_size = len(self.waveform[0])
|
||||
self.data_buf_size = self.data_buf_all_size
|
||||
else:
|
||||
self.data_buf_all = np.concatenate((self.data_buf_all, self.waveform[0]))
|
||||
self.data_buf_all_size += len(self.waveform[0])
|
||||
for offset in range(0, self.waveform.shape[1] - frame_sample_length + 1, frame_shift_length):
|
||||
self.decibel.append(
|
||||
10 * math.log10(np.square((self.waveform[0][offset: offset + frame_sample_length])).sum() + \
|
||||
@ -294,17 +296,14 @@ class E2EVadModel():
|
||||
# scores = self.encoder(feats, in_cache) # return B * T * D
|
||||
self.vad_opts.nn_eval_block_size = scores.shape[1]
|
||||
self.frm_cnt += scores.shape[1] # count total frames
|
||||
if self.scores is None:
|
||||
self.scores = scores # the first calculation
|
||||
else:
|
||||
self.scores = np.concatenate((self.scores, scores), axis=1)
|
||||
self.scores=scores
|
||||
|
||||
def PopDataBufTillFrame(self, frame_idx: int) -> None: # need check again
|
||||
while self.data_buf_start_frame < frame_idx:
|
||||
if len(self.data_buf) >= int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000):
|
||||
if self.data_buf_size >= int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000):
|
||||
self.data_buf_start_frame += 1
|
||||
self.data_buf = self.data_buf_all[self.data_buf_start_frame * int(
|
||||
self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000):]
|
||||
self.data_buf_size = self.data_buf_all_size-self.data_buf_start_frame * int(
|
||||
self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000)
|
||||
|
||||
def PopDataToOutputBuf(self, start_frm: int, frm_cnt: int, first_frm_is_start_point: bool,
|
||||
last_frm_is_end_point: bool, end_point_is_sent_end: bool) -> None:
|
||||
@ -315,8 +314,8 @@ class E2EVadModel():
|
||||
self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000))
|
||||
expected_sample_number += int(extra_sample)
|
||||
if end_point_is_sent_end:
|
||||
expected_sample_number = max(expected_sample_number, len(self.data_buf))
|
||||
if len(self.data_buf) < expected_sample_number:
|
||||
expected_sample_number = max(expected_sample_number, self.data_buf_size)
|
||||
if self.data_buf_size < expected_sample_number:
|
||||
print('error in calling pop data_buf\n')
|
||||
|
||||
if len(self.output_data_buf) == 0 or first_frm_is_start_point:
|
||||
@ -334,10 +333,10 @@ class E2EVadModel():
|
||||
data_to_pop = expected_sample_number
|
||||
else:
|
||||
data_to_pop = int(frm_cnt * self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000)
|
||||
if data_to_pop > len(self.data_buf):
|
||||
print('VAD data_to_pop is bigger than self.data_buf.size()!!!\n')
|
||||
data_to_pop = len(self.data_buf)
|
||||
expected_sample_number = len(self.data_buf)
|
||||
if data_to_pop > self.data_buf_size:
|
||||
print('VAD data_to_pop is bigger than self.data_buf_size!!!\n')
|
||||
data_to_pop = self.data_buf_size
|
||||
expected_sample_number = self.data_buf_size
|
||||
|
||||
cur_seg.doa = 0
|
||||
for sample_cpy_out in range(0, data_to_pop):
|
||||
@ -420,7 +419,7 @@ class E2EVadModel():
|
||||
assert len(self.sil_pdf_ids) == self.vad_opts.silence_pdf_num
|
||||
if len(self.sil_pdf_ids) > 0:
|
||||
assert len(self.scores) == 1 # 只支持batch_size = 1的测试
|
||||
sil_pdf_scores = [self.scores[0][t][sil_pdf_id] for sil_pdf_id in self.sil_pdf_ids]
|
||||
sil_pdf_scores = [self.scores[0][t - self.idx_pre_chunk][sil_pdf_id] for sil_pdf_id in self.sil_pdf_ids]
|
||||
sum_score = sum(sil_pdf_scores)
|
||||
noise_prob = math.log(sum_score) * self.vad_opts.speech_2_noise_ratio
|
||||
total_score = 1.0
|
||||
@ -502,7 +501,7 @@ class E2EVadModel():
|
||||
frame_state = FrameState.kFrameStateInvalid
|
||||
frame_state = self.GetFrameState(self.frm_cnt - 1 - i)
|
||||
self.DetectOneFrame(frame_state, self.frm_cnt - 1 - i, False)
|
||||
|
||||
self.idx_pre_chunk += self.scores.shape[1]
|
||||
return 0
|
||||
|
||||
def DetectLastFrames(self) -> int:
|
||||
|
||||
Loading…
Reference in New Issue
Block a user