mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
test
This commit is contained in:
parent
5ecd13bd04
commit
343a281ca1
@ -413,7 +413,6 @@ class LCBNet(nn.Module):
|
||||
logging.info("enable beam_search")
|
||||
self.init_beam_search(**kwargs)
|
||||
self.nbest = kwargs.get("nbest", 1)
|
||||
pdb.set_trace()
|
||||
|
||||
meta_data = {}
|
||||
if isinstance(data_in, torch.Tensor) and kwargs.get("data_type", "sound") == "fbank": # fbank
|
||||
@ -431,6 +430,7 @@ class LCBNet(nn.Module):
|
||||
tokenizer=tokenizer)
|
||||
time2 = time.perf_counter()
|
||||
meta_data["load_data"] = f"{time2 - time1:0.3f}"
|
||||
pdb.set_trace()
|
||||
speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"),
|
||||
frontend=frontend)
|
||||
time3 = time.perf_counter()
|
||||
|
||||
@ -31,14 +31,13 @@ def load_audio_text_image_video(data_or_path_or_list, fs: int = 16000, audio_fs:
|
||||
return [load_audio_text_image_video(audio, fs=fs, audio_fs=audio_fs, data_type=data_type, **kwargs) for audio in data_or_path_or_list]
|
||||
if isinstance(data_or_path_or_list, str) and data_or_path_or_list.startswith('http'): # download url to local file
|
||||
data_or_path_or_list = download_from_url(data_or_path_or_list)
|
||||
pdb.set_trace()
|
||||
|
||||
if isinstance(data_or_path_or_list, str) and os.path.exists(data_or_path_or_list): # local file
|
||||
if data_type is None or data_type == "sound":
|
||||
data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list)
|
||||
if kwargs.get("reduce_channels", True):
|
||||
data_or_path_or_list = data_or_path_or_list.mean(0)
|
||||
elif data_type == "text" and tokenizer is not None:
|
||||
pdb.set_trace()
|
||||
data_or_path_or_list = tokenizer.encode(data_or_path_or_list)
|
||||
elif data_type == "image": # undo
|
||||
pass
|
||||
@ -68,7 +67,7 @@ def load_audio_text_image_video(data_or_path_or_list, fs: int = 16000, audio_fs:
|
||||
else:
|
||||
pass
|
||||
# print(f"unsupport data type: {data_or_path_or_list}, return raw data")
|
||||
pdb.set_trace()
|
||||
|
||||
if audio_fs != fs and data_type != "text":
|
||||
resampler = torchaudio.transforms.Resample(audio_fs, fs)
|
||||
data_or_path_or_list = resampler(data_or_path_or_list[None, :])[0, :]
|
||||
@ -112,6 +111,7 @@ def extract_fbank(data, data_len = None, data_type: str="sound", frontend=None,
|
||||
# import pdb;
|
||||
# pdb.set_trace()
|
||||
# if data_type == "sound":
|
||||
pdb.set_trace()
|
||||
data, data_len = frontend(data, data_len, **kwargs)
|
||||
|
||||
if isinstance(data_len, (list, tuple)):
|
||||
|
||||
Loading…
Reference in New Issue
Block a user