diff --git a/funasr/models/lcbnet/model.py b/funasr/models/lcbnet/model.py index 54fba1cb2..d1ebc5ce5 100644 --- a/funasr/models/lcbnet/model.py +++ b/funasr/models/lcbnet/model.py @@ -413,7 +413,6 @@ class LCBNet(nn.Module): logging.info("enable beam_search") self.init_beam_search(**kwargs) self.nbest = kwargs.get("nbest", 1) - pdb.set_trace() meta_data = {} if isinstance(data_in, torch.Tensor) and kwargs.get("data_type", "sound") == "fbank": # fbank @@ -431,6 +430,7 @@ class LCBNet(nn.Module): tokenizer=tokenizer) time2 = time.perf_counter() meta_data["load_data"] = f"{time2 - time1:0.3f}" + pdb.set_trace() speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=frontend) time3 = time.perf_counter() diff --git a/funasr/utils/load_utils.py b/funasr/utils/load_utils.py index 20fa0fd2e..963f5c258 100644 --- a/funasr/utils/load_utils.py +++ b/funasr/utils/load_utils.py @@ -31,14 +31,13 @@ def load_audio_text_image_video(data_or_path_or_list, fs: int = 16000, audio_fs: return [load_audio_text_image_video(audio, fs=fs, audio_fs=audio_fs, data_type=data_type, **kwargs) for audio in data_or_path_or_list] if isinstance(data_or_path_or_list, str) and data_or_path_or_list.startswith('http'): # download url to local file data_or_path_or_list = download_from_url(data_or_path_or_list) - pdb.set_trace() + if isinstance(data_or_path_or_list, str) and os.path.exists(data_or_path_or_list): # local file if data_type is None or data_type == "sound": data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list) if kwargs.get("reduce_channels", True): data_or_path_or_list = data_or_path_or_list.mean(0) elif data_type == "text" and tokenizer is not None: - pdb.set_trace() data_or_path_or_list = tokenizer.encode(data_or_path_or_list) elif data_type == "image": # undo pass @@ -68,7 +67,7 @@ def load_audio_text_image_video(data_or_path_or_list, fs: int = 16000, audio_fs: else: pass # print(f"unsupport data type: {data_or_path_or_list}, return raw data") - pdb.set_trace() + if audio_fs != fs and data_type != "text": resampler = torchaudio.transforms.Resample(audio_fs, fs) data_or_path_or_list = resampler(data_or_path_or_list[None, :])[0, :] @@ -112,6 +111,7 @@ def extract_fbank(data, data_len = None, data_type: str="sound", frontend=None, # import pdb; # pdb.set_trace() # if data_type == "sound": + pdb.set_trace() data, data_len = frontend(data, data_len, **kwargs) if isinstance(data_len, (list, tuple)):