mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
test
This commit is contained in:
parent
ab4a31201c
commit
2bffe1d539
@ -6,7 +6,6 @@ python -m funasr.bin.inference \
|
||||
--config-name="config.yaml" \
|
||||
++init_param=${file_dir}/model.pb \
|
||||
++tokenizer_conf.token_list=${file_dir}/tokens.txt \
|
||||
++frontend_conf.cmvn_file=${file_dir}/am.mvn \
|
||||
++input=[${file_dir}/wav.scp,${file_dir}/ocr_text] \
|
||||
+data_type='["kaldi_ark", "text"]' \
|
||||
++tokenizer_conf.bpemodel=${file_dir}/bpe.model \
|
||||
|
||||
@ -21,6 +21,7 @@ from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
|
||||
from funasr.utils import postprocess_utils
|
||||
from funasr.utils.datadir_writer import DatadirWriter
|
||||
from funasr.register import tables
|
||||
|
||||
import pdb
|
||||
@tables.register("model_classes", "LCBNet")
|
||||
class LCBNet(nn.Module):
|
||||
@ -92,6 +93,7 @@ class LCBNet(nn.Module):
|
||||
bias_predictor_class = tables.encoder_classes.get(bias_predictor)
|
||||
bias_predictor = bias_predictor_class(**bias_predictor_conf)
|
||||
|
||||
|
||||
if decoder is not None:
|
||||
decoder_class = tables.decoder_classes.get(decoder)
|
||||
decoder = decoder_class(
|
||||
@ -272,15 +274,15 @@ class LCBNet(nn.Module):
|
||||
ind: int
|
||||
"""
|
||||
with autocast(False):
|
||||
|
||||
pdb.set_trace()
|
||||
# Data augmentation
|
||||
if self.specaug is not None and self.training:
|
||||
speech, speech_lengths = self.specaug(speech, speech_lengths)
|
||||
|
||||
pdb.set_trace()
|
||||
# Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
|
||||
if self.normalize is not None:
|
||||
speech, speech_lengths = self.normalize(speech, speech_lengths)
|
||||
|
||||
pdb.set_trace()
|
||||
# Forward encoder
|
||||
# feats: (Batch, Length, Dim)
|
||||
# -> encoder_out: (Batch, Length2, Dim2)
|
||||
@ -297,7 +299,7 @@ class LCBNet(nn.Module):
|
||||
|
||||
if intermediate_outs is not None:
|
||||
return (encoder_out, intermediate_outs), encoder_out_lens
|
||||
|
||||
pdb.set_trace()
|
||||
return encoder_out, encoder_out_lens
|
||||
|
||||
def _calc_att_loss(
|
||||
@ -442,6 +444,7 @@ class LCBNet(nn.Module):
|
||||
|
||||
speech = speech.to(device=kwargs["device"])
|
||||
speech_lengths = speech_lengths.to(device=kwargs["device"])
|
||||
pdb.set_trace()
|
||||
# Encoder
|
||||
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
||||
if isinstance(encoder_out, tuple):
|
||||
|
||||
@ -108,10 +108,7 @@ def extract_fbank(data, data_len = None, data_type: str="sound", frontend=None,
|
||||
data_list.append(data_i)
|
||||
data_len.append(data_i.shape[0])
|
||||
data = pad_sequence(data_list, batch_first=True) # data: [batch, N]
|
||||
# import pdb;
|
||||
# pdb.set_trace()
|
||||
# if data_type == "sound":
|
||||
pdb.set_trace()
|
||||
|
||||
data, data_len = frontend(data, data_len, **kwargs)
|
||||
|
||||
if isinstance(data_len, (list, tuple)):
|
||||
|
||||
Loading…
Reference in New Issue
Block a user