diff --git a/examples/industrial_data_pretraining/lcbnet/demo2.sh b/examples/industrial_data_pretraining/lcbnet/demo2.sh index cfb5b235e..0d5a4f031 100755 --- a/examples/industrial_data_pretraining/lcbnet/demo2.sh +++ b/examples/industrial_data_pretraining/lcbnet/demo2.sh @@ -6,7 +6,6 @@ python -m funasr.bin.inference \ --config-name="config.yaml" \ ++init_param=${file_dir}/model.pb \ ++tokenizer_conf.token_list=${file_dir}/tokens.txt \ -++frontend_conf.cmvn_file=${file_dir}/am.mvn \ ++input=[${file_dir}/wav.scp,${file_dir}/ocr_text] \ +data_type='["kaldi_ark", "text"]' \ ++tokenizer_conf.bpemodel=${file_dir}/bpe.model \ diff --git a/funasr/models/lcbnet/model.py b/funasr/models/lcbnet/model.py index 1acce785f..f45e71d6f 100644 --- a/funasr/models/lcbnet/model.py +++ b/funasr/models/lcbnet/model.py @@ -21,6 +21,7 @@ from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank from funasr.utils import postprocess_utils from funasr.utils.datadir_writer import DatadirWriter from funasr.register import tables + import pdb @tables.register("model_classes", "LCBNet") class LCBNet(nn.Module): @@ -92,6 +93,7 @@ class LCBNet(nn.Module): bias_predictor_class = tables.encoder_classes.get(bias_predictor) bias_predictor = bias_predictor_class(**bias_predictor_conf) + if decoder is not None: decoder_class = tables.decoder_classes.get(decoder) decoder = decoder_class( @@ -272,15 +274,15 @@ class LCBNet(nn.Module): ind: int """ with autocast(False): - + pdb.set_trace() # Data augmentation if self.specaug is not None and self.training: speech, speech_lengths = self.specaug(speech, speech_lengths) - + pdb.set_trace() # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN if self.normalize is not None: speech, speech_lengths = self.normalize(speech, speech_lengths) - + pdb.set_trace() # Forward encoder # feats: (Batch, Length, Dim) # -> encoder_out: (Batch, Length2, Dim2) @@ -297,7 +299,7 @@ class LCBNet(nn.Module): if intermediate_outs is not None: return (encoder_out, intermediate_outs), encoder_out_lens - + pdb.set_trace() return encoder_out, encoder_out_lens def _calc_att_loss( @@ -442,6 +444,7 @@ class LCBNet(nn.Module): speech = speech.to(device=kwargs["device"]) speech_lengths = speech_lengths.to(device=kwargs["device"]) + pdb.set_trace() # Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) if isinstance(encoder_out, tuple): diff --git a/funasr/utils/load_utils.py b/funasr/utils/load_utils.py index 963f5c258..644af2324 100644 --- a/funasr/utils/load_utils.py +++ b/funasr/utils/load_utils.py @@ -108,10 +108,7 @@ def extract_fbank(data, data_len = None, data_type: str="sound", frontend=None, data_list.append(data_i) data_len.append(data_i.shape[0]) data = pad_sequence(data_list, batch_first=True) # data: [batch, N] - # import pdb; - # pdb.set_trace() - # if data_type == "sound": - pdb.set_trace() + data, data_len = frontend(data, data_len, **kwargs) if isinstance(data_len, (list, tuple)):