mirror of
https://github.com/ggml-org/whisper.cpp.git
synced 2025-09-15 13:28:35 +08:00
* musa: correct MUSA SDK rc4.0.1 download URL Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com> * Fix typo Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com> --------- Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com> |
||
|---|---|---|
| .. | ||
| normalizers | ||
| .gitignore | ||
| eval.mk | ||
| eval.py | ||
| Makefile | ||
| README.md | ||
| requirements.txt | ||
whisper.cpp/tests/librispeech
LibriSpeech is a standard dataset for training and evaluating automatic speech recognition systems.
This directory contains a set of tools to evaluate the recognition performance of whisper.cpp on LibriSpeech corpus.
Quick Start
-
(Pre-requirement) Compile
whisper-cliand prepare the Whisper model inggmlformat.$ # Execute the commands below in the project root dir. $ cmake -B build $ cmake --build build --config Release $ ./models/download-ggml-model.sh tinyConsult whisper.cpp/README.md for more details.
-
Download the audio files from LibriSpeech project.
$ make get-audio -
Set up the environment to compute WER score.
$ pip install -r requirements.txtFor example, if you use
virtualenv, you can set up it as follows:$ python3 -m venv venv $ . venv/bin/activate $ pip install -r requirements.txt -
Run the benchmark test.
$ make
How-to guides
How to change the inference parameters
Create eval.conf and override variables.
WHISPER_MODEL = large-v3-turbo
WHISPER_FLAGS = --no-prints --threads 8 --language en --output-txt
Check out eval.mk for more details.