Compare commits

...

11 Commits

Author SHA1 Message Date
Daniel Bevenius
a5aad8dcf0
Merge 9b8d96df34 into edea8a9c3c 2025-09-12 09:36:41 +03:00
Siva Mahadevan
edea8a9c3c
whisper : prefer curl over wget in download scripts (#3409)
Some checks failed
Bindings Tests (Ruby) / ubuntu-22 (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main-cuda.Dockerfile platform:linux/amd64 tag:main-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main-intel.Dockerfile platform:linux/amd64 tag:main-intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main-musa.Dockerfile platform:linux/amd64 tag:main-musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main.Dockerfile platform:linux/amd64 tag:main]) (push) Has been cancelled
Examples WASM / deploy-wasm-github-pages (push) Has been cancelled
On busybox-based systems like Alpine Linux, wget does not have
certain CLI flags such as '--no-config'. Thus, search for the
existence of 'curl' first in the PATH before wget. wget2 is
still the preferred download tool.
2025-09-08 06:32:19 +02:00
Daniel Bevenius
bb0e1fc60f
ci : remove brew installation of cmake for macos-latest (#3408)
Some checks failed
Bindings Tests (Ruby) / ubuntu-22 (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main-cuda.Dockerfile platform:linux/amd64 tag:main-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main-intel.Dockerfile platform:linux/amd64 tag:main-intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main-musa.Dockerfile platform:linux/amd64 tag:main-musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main.Dockerfile platform:linux/amd64 tag:main]) (push) Has been cancelled
Examples WASM / deploy-wasm-github-pages (push) Has been cancelled
This commit remove the brew install of cmake for macos-latest
as this now seems to be pre-installed on the runner.

The motivation for this is that this job is failing with the following
error:
```console
Error: cmake was installed from the local/pinned tap
but you are trying to install it from the homebrew/core tap.
Formulae with the same name from different taps cannot be installed at the same time.
```
2025-09-05 15:20:32 +02:00
Daniel Bevenius
9bfc535130
tests : use CMake definitions for model/sample paths (#3406)
Some checks failed
Bindings Tests (Ruby) / ubuntu-22 (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main-cuda.Dockerfile platform:linux/amd64 tag:main-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main-intel.Dockerfile platform:linux/amd64 tag:main-intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main-musa.Dockerfile platform:linux/amd64 tag:main-musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main.Dockerfile platform:linux/amd64 tag:main]) (push) Has been cancelled
Examples WASM / deploy-wasm-github-pages (push) Has been cancelled
This commit modifies the test-vad and test-vad-full tests to use CMake
definitions for the model and sample paths.

The motivation for this is that currently the tests use relative paths
which might not always be correct depending on the working directory.
With the changes in this commit the tests can be run usins ctest:
```console
$ ctest -R ^test-vad$ --test-dir build
```
Or directly (which is not currently possible without this fix):
```
./build/bin/test-vad
```

Resolves: https://github.com/ggml-org/whisper.cpp/issues/3404
2025-09-04 15:08:30 +02:00
Daniel Bevenius
9b8d96df34 scripts : remove common.{cpp,h} from sync-ggml-am.sh 2025-06-12 15:06:06 +02:00
Daniel Bevenius
90cb4eef9b scripts : remove common.{cpp,h} from sync-ggml.sh 2025-06-12 15:04:50 +02:00
Daniel Bevenius
817d666ec7 examples : remove unused json_parse function 2025-06-12 14:52:28 +02:00
Daniel Bevenius
651a29aa3a examples : remove unused static functions 2025-06-12 14:50:20 +02:00
Daniel Bevenius
9e5021a13b examples : remove more unused functions 2025-06-12 14:46:37 +02:00
Daniel Bevenius
1611bae42d examples : remove unused gpt_vocab_init function 2025-06-12 14:42:24 +02:00
Daniel Bevenius
48210c2487 examples : remove unused code from common.{cpp,h}
This commit removes unused structs and functions from common.h and
common.cpp.

The motivation for this change to clean up the examples codebase and
this is a start to that process. I was going to add VAD support to the
server and actually thought of adding these params to common.h which is
why I started looking at this.
2025-06-12 14:35:34 +02:00
9 changed files with 18 additions and 452 deletions

View File

@ -241,7 +241,8 @@ jobs:
- name: Dependencies
run: |
brew update
brew install sdl2 cmake
cmake --version
brew install sdl2
- name: Build
run: |

View File

@ -10,129 +10,6 @@
#include <regex>
#include <sstream>
// Function to check if the next argument exists
static std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
if (i + 1 < argc && argv[i + 1][0] != '-') {
return argv[++i];
} else {
fprintf(stderr, "error: %s requires one argument.\n", flag.c_str());
gpt_print_usage(argc, argv, params);
exit(0);
}
}
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-s" || arg == "--seed") {
params.seed = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-t" || arg == "--threads") {
params.n_threads = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-p" || arg == "--prompt") {
params.prompt = get_next_arg(i, argc, argv, arg, params);
} else if (arg == "-n" || arg == "--n_predict") {
params.n_predict = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-np" || arg == "--n_parallel") {
params.n_parallel = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--top_k") {
params.top_k = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--top_p") {
params.top_p = std::stof(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--temp") {
params.temp = std::stof(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--repeat-last-n") {
params.repeat_last_n = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--repeat-penalty") {
params.repeat_penalty = std::stof(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-b" || arg == "--batch_size") {
params.n_batch= std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-c" || arg == "--context") {
params.n_ctx= std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
params.n_gpu_layers = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--ignore-eos") {
params.ignore_eos = true;
} else if (arg == "-m" || arg == "--model") {
params.model = get_next_arg(i, argc, argv, arg, params);
} else if (arg == "-i" || arg == "--interactive") {
params.interactive = true;
} else if (arg == "-ip" || arg == "--interactive-port") {
params.interactive = true;
params.interactive_port = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-h" || arg == "--help") {
gpt_print_usage(argc, argv, params);
exit(0);
} else if (arg == "-f" || arg == "--file") {
get_next_arg(i, argc, argv, arg, params);
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
break;
}
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
if (params.prompt.back() == '\n') {
params.prompt.pop_back();
}
} else if (arg == "-tt" || arg == "--token_test") {
params.token_test = get_next_arg(i, argc, argv, arg, params);
}
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
gpt_print_usage(argc, argv, params);
exit(0);
}
}
return true;
}
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
fprintf(stderr, " prompt to start generation with (default: random)\n");
fprintf(stderr, " -f FNAME, --file FNAME\n");
fprintf(stderr, " load prompt from a file\n");
fprintf(stderr, " -tt TOKEN_TEST, --token_test TOKEN_TEST\n");
fprintf(stderr, " test tokenization\n");
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
fprintf(stderr, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled)\n", params.repeat_last_n);
fprintf(stderr, " --repeat-penalty N penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)\n", (double)params.repeat_penalty);
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
fprintf(stderr, " -c N, --context N context / KV cache size (default: %d)\n", params.n_ctx);
fprintf(stderr, " --ignore-eos ignore EOS token during generation\n");
fprintf(stderr, " -ngl N, --gpu-layers N number of layers to offload to GPU on supported models (default: %d)\n", params.n_gpu_layers);
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, "\n");
}
std::string gpt_random_prompt(std::mt19937 & rng) {
const int r = rng() % 10;
switch (r) {
case 0: return "So";
case 1: return "Once upon a time";
case 2: return "When";
case 3: return "The";
case 4: return "After";
case 5: return "If";
case 6: return "import";
case 7: return "He";
case 8: return "She";
case 9: return "They";
}
return "The";
}
std::string trim(const std::string & s) {
std::regex e("^\\s+|\\s+$");
return std::regex_replace(s, e, "");
@ -152,252 +29,6 @@ void gpt_vocab::add_special_token(const std::string & token) {
special_tokens.push_back(token);
}
std::map<std::string, int32_t> json_parse(const std::string & fname) {
std::map<std::string, int32_t> result;
// read file into string
std::string json;
{
std::ifstream ifs(fname);
if (!ifs) {
fprintf(stderr, "Failed to open %s\n", fname.c_str());
exit(1);
}
json = std::string((std::istreambuf_iterator<char>(ifs)),
(std::istreambuf_iterator<char>()));
}
if (json[0] != '{') {
return result;
}
// parse json
{
bool has_key = false;
bool in_token = false;
std::string str_key = "";
std::string str_val = "";
int n = json.size();
for (int i = 1; i < n; ++i) {
if (!in_token) {
if (json[i] == ' ') continue;
if (json[i] == '"') {
in_token = true;
continue;
}
} else {
if (json[i] == '\\' && i+1 < n) {
if (has_key == false) {
str_key += json[i];
} else {
str_val += json[i];
}
++i;
} else if (json[i] == '"') {
if (has_key == false) {
has_key = true;
++i;
while (json[i] == ' ') ++i;
++i; // :
while (json[i] == ' ') ++i;
if (json[i] != '\"') {
while (json[i] != ',' && json[i] != '}') {
str_val += json[i++];
}
has_key = false;
} else {
in_token = true;
continue;
}
} else {
has_key = false;
}
str_key = ::replace(str_key, "\\u0120", " " ); // \u0120 -> space
str_key = ::replace(str_key, "\\u010a", "\n"); // \u010a -> new line
str_key = ::replace(str_key, "\\\"", "\""); // \\\" -> "
try {
result[str_key] = std::stoi(str_val);
} catch (...) {
//fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str());
}
str_key = "";
str_val = "";
in_token = false;
continue;
}
if (has_key == false) {
str_key += json[i];
} else {
str_val += json[i];
}
}
}
}
return result;
}
void gpt_split_words(std::string str, std::vector<std::string>& words) {
const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
const std::regex re(pattern);
std::smatch m;
while (std::regex_search(str, m, re)) {
for (auto x : m) {
words.push_back(x);
}
str = m.suffix();
}
}
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
std::vector<std::string> words;
// first split the text into words
{
std::string str = text;
// Generate the subpattern from the special_tokens vector if it's not empty
if (!vocab.special_tokens.empty()) {
const std::regex escape(R"([\[\\\^\$\.\|\?\*\+\(\)\{\}])");
std::string special_tokens_subpattern;
for (const auto & token : vocab.special_tokens) {
if (!special_tokens_subpattern.empty()) {
special_tokens_subpattern += "|";
}
special_tokens_subpattern += std::regex_replace(token, escape, R"(\$&)");
}
std::regex re(special_tokens_subpattern);
std::smatch m;
// Split the text by special tokens.
while (std::regex_search(str, m, re)) {
// Split the substrings in-between special tokens into words.
gpt_split_words(m.prefix(), words);
// Add matched special tokens as words.
for (auto x : m) {
words.push_back(x);
}
str = m.suffix();
}
// Remaining text without special tokens will be handled below.
}
gpt_split_words(str, words);
}
// find the longest token that forms each word in words:
std::vector<gpt_vocab::id> tokens;
for (const auto & word : words) {
for (int i = 0; i < (int) word.size(); ){
for (int j = word.size() - 1; j >= i; j--){
auto cand = word.substr(i, j-i+1);
auto it = vocab.token_to_id.find(cand);
if (it != vocab.token_to_id.end()){ // word.substr(i, j-i+1) in vocab
tokens.push_back(it->second);
i = j + 1;
break;
}
else if (j == i){ // word.substr(i, 1) has no matching
fprintf(stderr, "%s: unknown token '%s'\n", __func__, word.substr(i, 1).data());
i++;
}
}
}
}
return tokens;
}
static std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string& input, char delimiter) {
std::vector<gpt_vocab::id> output;
std::stringstream ss(input);
std::string token;
while (std::getline(ss, token, delimiter)) {
output.push_back(std::stoi(token));
}
return output;
}
static std::map<std::string, std::vector<gpt_vocab::id>> extract_tests_from_file(const std::string & fpath_test){
if (fpath_test.empty()){
fprintf(stderr, "%s : No test file found.\n", __func__);
return std::map<std::string, std::vector<gpt_vocab::id>>();
}
std::map<std::string, std::vector<gpt_vocab::id>> tests;
auto fin = std::ifstream(fpath_test, std::ios_base::in);
const char * delimeter = " => ";
const char del_tok = ',';
std::string line;
while (std::getline(fin, line)) {
size_t delimiterPos = line.find(delimeter);
if (delimiterPos != std::string::npos) {
std::string text = line.substr(0, delimiterPos);
std::string s_tokens = line.substr(delimiterPos + std::strlen(delimeter));
tests[text] = parse_tokens_from_string(s_tokens, del_tok);
}
}
return tests;
}
void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test){
std::map<std::string, std::vector<gpt_vocab::id>> tests = extract_tests_from_file(fpath_test);
size_t n_fails = 0;
for (const auto & test : tests) {
std::vector<gpt_vocab::id> tokens = gpt_tokenize(vocab, test.first);
if (tokens != test.second){
n_fails++;
// print out failure cases
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test.first.c_str());
fprintf(stderr, "%s : tokens in hf: ", __func__);
for (const auto & t : test.second) {
fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);
}
fprintf(stderr, "\n");
fprintf(stderr, "%s : tokens in ggml: ", __func__);
for (const auto & t : tokens) {
fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);
}
fprintf(stderr, "\n");
}
}
fprintf(stderr, "%s : %zu tests failed out of %zu tests.\n", __func__, n_fails, tests.size());
}
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
vocab.token_to_id = ::json_parse(fname);
for (const auto & kv : vocab.token_to_id) {
vocab.id_to_token[kv.second] = kv.first;
}
printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
// print the vocabulary
//for (auto kv : vocab.token_to_id) {
// printf("'%s' -> %d\n", kv.first.data(), kv.second);
//}
return true;
}
gpt_vocab::id gpt_sample_top_k_top_p(
const gpt_vocab & vocab,
const float * logits,

View File

@ -11,42 +11,6 @@
#include <fstream>
#include <sstream>
//
// GPT CLI argument parsing
//
struct gpt_params {
int32_t seed = -1; // RNG seed
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_predict = 200; // new tokens to predict
int32_t n_parallel = 1; // number of parallel streams
int32_t n_batch = 32; // batch size for prompt processing
int32_t n_ctx = 2048; // context size (this is the KV cache max size)
int32_t n_gpu_layers = 0; // number of layers to offlload to the GPU
bool ignore_eos = false; // ignore EOS token when generating text
// sampling parameters
int32_t top_k = 40;
float top_p = 0.9f;
float temp = 0.9f;
int32_t repeat_last_n = 64;
float repeat_penalty = 1.00f;
std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
std::string prompt = "";
std::string token_test = "";
bool interactive = false;
int32_t interactive_port = -1;
};
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
std::string gpt_random_prompt(std::mt19937 & rng);
//
// Vocab utils
//
@ -69,39 +33,6 @@ struct gpt_vocab {
void add_special_token(const std::string & token);
};
// poor-man's JSON parsing
std::map<std::string, int32_t> json_parse(const std::string & fname);
std::string convert_to_utf8(const std::wstring & input);
std::wstring convert_to_wstring(const std::string & input);
void gpt_split_words(std::string str, std::vector<std::string>& words);
// split text into tokens
//
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
//
// Regex (Python):
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
//
// Regex (C++):
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
//
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
// test outputs of gpt_tokenize
//
// - compare with tokens generated by the huggingface tokenizer
// - test cases are chosen based on the model's main language (under 'prompt' directory)
// - if all sentences are tokenized identically, print 'All tests passed.'
// - otherwise, print sentence, huggingface tokens, ggml tokens
//
void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test);
// load the tokens from encoder.json
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
// sample next token given probabilities for each embedding
//
// - consider only the top K tokens

View File

@ -119,12 +119,12 @@ fi
if [ -x "$(command -v wget2)" ]; then
wget2 --no-config --progress bar -O ggml-"$model".bin $src/$pfx-"$model".bin
elif [ -x "$(command -v wget)" ]; then
wget --no-config --quiet --show-progress -O ggml-"$model".bin $src/$pfx-"$model".bin
elif [ -x "$(command -v curl)" ]; then
curl -L --output ggml-"$model".bin $src/$pfx-"$model".bin
elif [ -x "$(command -v wget)" ]; then
wget --no-config --quiet --show-progress -O ggml-"$model".bin $src/$pfx-"$model".bin
else
printf "Either wget or curl is required to download models.\n"
printf "Either wget2, curl, or wget is required to download models.\n"
exit 1
fi

View File

@ -64,8 +64,6 @@ while read c; do
src/ggml* \
include/ggml*.h \
include/gguf*.h \
examples/common.h \
examples/common.cpp \
examples/common-ggml.h \
examples/common-ggml.cpp \
LICENSE \

View File

@ -11,8 +11,6 @@ cp -rpv ../ggml/src/ggml* ./ggml/src/
cp -rpv ../ggml/include/ggml*.h ./ggml/include/
cp -rpv ../ggml/include/gguf*.h ./ggml/include/
cp -rpv ../ggml/examples/common.h ./examples/common.h
cp -rpv ../ggml/examples/common.cpp ./examples/common.cpp
cp -rpv ../ggml/examples/common-ggml.h ./examples/common-ggml.h
cp -rpv ../ggml/examples/common-ggml.cpp ./examples/common-ggml.cpp

View File

@ -93,6 +93,9 @@ set(VAD_TEST test-vad)
add_executable(${VAD_TEST} ${VAD_TEST}.cpp)
target_include_directories(${VAD_TEST} PRIVATE ../include ../ggml/include ../examples)
target_link_libraries(${VAD_TEST} PRIVATE common)
target_compile_definitions(${VAD_TEST} PRIVATE
VAD_MODEL_PATH="${PROJECT_SOURCE_DIR}/models/for-tests-silero-v5.1.2-ggml.bin"
SAMPLE_PATH="${PROJECT_SOURCE_DIR}/samples/jfk.wav")
add_test(NAME ${VAD_TEST} COMMAND ${VAD_TEST})
set_tests_properties(${VAD_TEST} PROPERTIES LABELS "unit")
@ -101,5 +104,9 @@ set(VAD_TEST test-vad-full)
add_executable(${VAD_TEST} ${VAD_TEST}.cpp)
target_include_directories(${VAD_TEST} PRIVATE ../include ../ggml/include ../examples)
target_link_libraries(${VAD_TEST} PRIVATE common)
target_compile_definitions(${VAD_TEST} PRIVATE
WHISPER_MODEL_PATH="${PROJECT_SOURCE_DIR}/models/ggml-base.en.bin"
VAD_MODEL_PATH="${PROJECT_SOURCE_DIR}/models/for-tests-silero-v5.1.2-ggml.bin"
SAMPLE_PATH="${PROJECT_SOURCE_DIR}/samples/jfk.wav")
add_test(NAME ${VAD_TEST} COMMAND ${VAD_TEST})
set_tests_properties(${VAD_TARGET} PROPERTIES LABELS "base;en")
set_tests_properties(${VAD_TEST} PROPERTIES LABELS "base;en")

View File

@ -13,9 +13,9 @@
#include <cassert>
int main() {
std::string whisper_model_path = "../../models/ggml-base.en.bin";
std::string vad_model_path = "../../models/for-tests-silero-v5.1.2-ggml.bin";
std::string sample_path = "../../samples/jfk.wav";
std::string whisper_model_path = WHISPER_MODEL_PATH;
std::string vad_model_path = VAD_MODEL_PATH;
std::string sample_path = SAMPLE_PATH;
// Load the sample audio file
std::vector<float> pcmf32;

View File

@ -48,8 +48,8 @@ struct whisper_vad_segments * test_detect_timestamps(
}
int main() {
std::string vad_model_path = "../../models/for-tests-silero-v5.1.2-ggml.bin";
std::string sample_path = "../../samples/jfk.wav";
std::string vad_model_path = VAD_MODEL_PATH;
std::string sample_path = SAMPLE_PATH;
// Load the sample audio file
std::vector<float> pcmf32;