mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
* update * update setup * update setup * update setup * update setup * update setup * update setup * update * update * update setup
443 lines
15 KiB
Python
443 lines
15 KiB
Python
# Copyright ESPnet (https://github.com/espnet/espnet). All Rights Reserved.
|
|
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
|
|
|
from abc import ABC
|
|
from abc import abstractmethod
|
|
import collections
|
|
import copy
|
|
import functools
|
|
import logging
|
|
import numbers
|
|
import re
|
|
from typing import Any
|
|
from typing import Callable
|
|
from typing import Collection
|
|
from typing import Dict
|
|
from typing import Mapping
|
|
from typing import Tuple
|
|
from typing import Union
|
|
|
|
import h5py
|
|
import humanfriendly
|
|
import kaldiio
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.data.dataset import Dataset
|
|
|
|
from funasr.fileio.npy_scp import NpyScpReader
|
|
from funasr.fileio.rand_gen_dataset import FloatRandomGenerateDataset
|
|
from funasr.fileio.rand_gen_dataset import IntRandomGenerateDataset
|
|
from funasr.fileio.read_text import load_num_sequence_text
|
|
from funasr.fileio.read_text import read_2column_text
|
|
from funasr.fileio.sound_scp import SoundScpReader
|
|
from funasr.utils.sized_dict import SizedDict
|
|
|
|
|
|
class AdapterForSoundScpReader(collections.abc.Mapping):
|
|
def __init__(self, loader, dtype=None):
|
|
self.loader = loader
|
|
self.dtype = dtype
|
|
self.rate = None
|
|
|
|
def keys(self):
|
|
return self.loader.keys()
|
|
|
|
def __len__(self):
|
|
return len(self.loader)
|
|
|
|
def __iter__(self):
|
|
return iter(self.loader)
|
|
|
|
def __getitem__(self, key: str) -> np.ndarray:
|
|
retval = self.loader[key]
|
|
|
|
if isinstance(retval, tuple):
|
|
assert len(retval) == 2, len(retval)
|
|
if isinstance(retval[0], int) and isinstance(retval[1], np.ndarray):
|
|
# sound scp case
|
|
rate, array = retval
|
|
elif isinstance(retval[1], int) and isinstance(retval[0], np.ndarray):
|
|
# Extended ark format case
|
|
array, rate = retval
|
|
else:
|
|
raise RuntimeError(
|
|
f"Unexpected type: {type(retval[0])}, {type(retval[1])}"
|
|
)
|
|
|
|
if self.rate is not None and self.rate != rate:
|
|
raise RuntimeError(
|
|
f"Sampling rates are mismatched: {self.rate} != {rate}"
|
|
)
|
|
self.rate = rate
|
|
# Multichannel wave fie
|
|
# array: (NSample, Channel) or (Nsample)
|
|
if self.dtype is not None:
|
|
array = array.astype(self.dtype)
|
|
|
|
else:
|
|
# Normal ark case
|
|
assert isinstance(retval, np.ndarray), type(retval)
|
|
array = retval
|
|
if self.dtype is not None:
|
|
array = array.astype(self.dtype)
|
|
|
|
assert isinstance(array, np.ndarray), type(array)
|
|
return array
|
|
|
|
|
|
class H5FileWrapper:
|
|
def __init__(self, path: str):
|
|
self.path = path
|
|
self.h5_file = h5py.File(path, "r")
|
|
|
|
def __repr__(self) -> str:
|
|
return str(self.h5_file)
|
|
|
|
def __len__(self) -> int:
|
|
return len(self.h5_file)
|
|
|
|
def __iter__(self):
|
|
return iter(self.h5_file)
|
|
|
|
def __getitem__(self, key) -> np.ndarray:
|
|
value = self.h5_file[key]
|
|
return value[()]
|
|
|
|
|
|
def sound_loader(path, dest_sample_rate=16000, float_dtype=None):
|
|
# The file is as follows:
|
|
# utterance_id_A /some/where/a.wav
|
|
# utterance_id_B /some/where/a.flac
|
|
|
|
# NOTE(kamo): SoundScpReader doesn't support pipe-fashion
|
|
# like Kaldi e.g. "cat a.wav |".
|
|
# NOTE(kamo): The audio signal is normalized to [-1,1] range.
|
|
loader = SoundScpReader(path, normalize=True, always_2d=False, dest_sample_rate = dest_sample_rate)
|
|
|
|
# SoundScpReader.__getitem__() returns Tuple[int, ndarray],
|
|
# but ndarray is desired, so Adapter class is inserted here
|
|
return AdapterForSoundScpReader(loader, float_dtype)
|
|
|
|
|
|
def kaldi_loader(path, float_dtype=None, max_cache_fd: int = 0):
|
|
loader = kaldiio.load_scp(path, max_cache_fd=max_cache_fd)
|
|
return AdapterForSoundScpReader(loader, float_dtype)
|
|
|
|
|
|
def rand_int_loader(filepath, loader_type):
|
|
# e.g. rand_int_3_10
|
|
try:
|
|
low, high = map(int, loader_type[len("rand_int_") :].split("_"))
|
|
except ValueError:
|
|
raise RuntimeError(f"e.g rand_int_3_10: but got {loader_type}")
|
|
return IntRandomGenerateDataset(filepath, low, high)
|
|
|
|
|
|
DATA_TYPES = {
|
|
"sound": dict(
|
|
func=sound_loader,
|
|
kwargs=["dest_sample_rate","float_dtype"],
|
|
help="Audio format types which supported by sndfile wav, flac, etc."
|
|
"\n\n"
|
|
" utterance_id_a a.wav\n"
|
|
" utterance_id_b b.wav\n"
|
|
" ...",
|
|
),
|
|
"kaldi_ark": dict(
|
|
func=kaldi_loader,
|
|
kwargs=["max_cache_fd"],
|
|
help="Kaldi-ark file type."
|
|
"\n\n"
|
|
" utterance_id_A /some/where/a.ark:123\n"
|
|
" utterance_id_B /some/where/a.ark:456\n"
|
|
" ...",
|
|
),
|
|
"npy": dict(
|
|
func=NpyScpReader,
|
|
kwargs=[],
|
|
help="Npy file format."
|
|
"\n\n"
|
|
" utterance_id_A /some/where/a.npy\n"
|
|
" utterance_id_B /some/where/b.npy\n"
|
|
" ...",
|
|
),
|
|
"text_int": dict(
|
|
func=functools.partial(load_num_sequence_text, loader_type="text_int"),
|
|
kwargs=[],
|
|
help="A text file in which is written a sequence of interger numbers "
|
|
"separated by space."
|
|
"\n\n"
|
|
" utterance_id_A 12 0 1 3\n"
|
|
" utterance_id_B 3 3 1\n"
|
|
" ...",
|
|
),
|
|
"csv_int": dict(
|
|
func=functools.partial(load_num_sequence_text, loader_type="csv_int"),
|
|
kwargs=[],
|
|
help="A text file in which is written a sequence of interger numbers "
|
|
"separated by comma."
|
|
"\n\n"
|
|
" utterance_id_A 100,80\n"
|
|
" utterance_id_B 143,80\n"
|
|
" ...",
|
|
),
|
|
"text_float": dict(
|
|
func=functools.partial(load_num_sequence_text, loader_type="text_float"),
|
|
kwargs=[],
|
|
help="A text file in which is written a sequence of float numbers "
|
|
"separated by space."
|
|
"\n\n"
|
|
" utterance_id_A 12. 3.1 3.4 4.4\n"
|
|
" utterance_id_B 3. 3.12 1.1\n"
|
|
" ...",
|
|
),
|
|
"csv_float": dict(
|
|
func=functools.partial(load_num_sequence_text, loader_type="csv_float"),
|
|
kwargs=[],
|
|
help="A text file in which is written a sequence of float numbers "
|
|
"separated by comma."
|
|
"\n\n"
|
|
" utterance_id_A 12.,3.1,3.4,4.4\n"
|
|
" utterance_id_B 3.,3.12,1.1\n"
|
|
" ...",
|
|
),
|
|
"text": dict(
|
|
func=read_2column_text,
|
|
kwargs=[],
|
|
help="Return text as is. The text must be converted to ndarray "
|
|
"by 'preprocess'."
|
|
"\n\n"
|
|
" utterance_id_A hello world\n"
|
|
" utterance_id_B foo bar\n"
|
|
" ...",
|
|
),
|
|
"hdf5": dict(
|
|
func=H5FileWrapper,
|
|
kwargs=[],
|
|
help="A HDF5 file which contains arrays at the first level or the second level."
|
|
" >>> f = h5py.File('file.h5')\n"
|
|
" >>> array1 = f['utterance_id_A']\n"
|
|
" >>> array2 = f['utterance_id_B']\n",
|
|
),
|
|
"rand_float": dict(
|
|
func=FloatRandomGenerateDataset,
|
|
kwargs=[],
|
|
help="Generate random float-ndarray which has the given shapes "
|
|
"in the file."
|
|
"\n\n"
|
|
" utterance_id_A 3,4\n"
|
|
" utterance_id_B 10,4\n"
|
|
" ...",
|
|
),
|
|
"rand_int_\\d+_\\d+": dict(
|
|
func=rand_int_loader,
|
|
kwargs=["loader_type"],
|
|
help="e.g. 'rand_int_0_10'. Generate random int-ndarray which has the given "
|
|
"shapes in the path. "
|
|
"Give the lower and upper value by the file type. e.g. "
|
|
"rand_int_0_10 -> Generate integers from 0 to 10."
|
|
"\n\n"
|
|
" utterance_id_A 3,4\n"
|
|
" utterance_id_B 10,4\n"
|
|
" ...",
|
|
),
|
|
}
|
|
|
|
|
|
class AbsDataset(Dataset, ABC):
|
|
@abstractmethod
|
|
def has_name(self, name) -> bool:
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def names(self) -> Tuple[str, ...]:
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def __getitem__(self, uid) -> Tuple[Any, Dict[str, np.ndarray]]:
|
|
raise NotImplementedError
|
|
|
|
|
|
class ESPnetDataset(AbsDataset):
|
|
"""Pytorch Dataset class for ESPNet.
|
|
|
|
Examples:
|
|
>>> dataset = ESPnetDataset([('wav.scp', 'input', 'sound'),
|
|
... ('token_int', 'output', 'text_int')],
|
|
... )
|
|
... uttid, data = dataset['uttid']
|
|
{'input': per_utt_array, 'output': per_utt_array}
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
path_name_type_list: Collection[Tuple[str, str, str]],
|
|
preprocess: Callable[
|
|
[str, Dict[str, np.ndarray]], Dict[str, np.ndarray]
|
|
] = None,
|
|
float_dtype: str = "float32",
|
|
int_dtype: str = "long",
|
|
max_cache_size: Union[float, int, str] = 0.0,
|
|
max_cache_fd: int = 0,
|
|
dest_sample_rate: int = 16000,
|
|
):
|
|
if len(path_name_type_list) == 0:
|
|
raise ValueError(
|
|
'1 or more elements are required for "path_name_type_list"'
|
|
)
|
|
|
|
path_name_type_list = copy.deepcopy(path_name_type_list)
|
|
self.preprocess = preprocess
|
|
|
|
self.float_dtype = float_dtype
|
|
self.int_dtype = int_dtype
|
|
self.max_cache_fd = max_cache_fd
|
|
self.dest_sample_rate = dest_sample_rate
|
|
|
|
self.loader_dict = {}
|
|
self.debug_info = {}
|
|
for path, name, _type in path_name_type_list:
|
|
if name in self.loader_dict:
|
|
raise RuntimeError(f'"{name}" is duplicated for data-key')
|
|
|
|
loader = self._build_loader(path, _type)
|
|
self.loader_dict[name] = loader
|
|
self.debug_info[name] = path, _type
|
|
if len(self.loader_dict[name]) == 0:
|
|
raise RuntimeError(f"{path} has no samples")
|
|
|
|
# TODO(kamo): Should check consistency of each utt-keys?
|
|
|
|
if isinstance(max_cache_size, str):
|
|
max_cache_size = humanfriendly.parse_size(max_cache_size)
|
|
self.max_cache_size = max_cache_size
|
|
if max_cache_size > 0:
|
|
self.cache = SizedDict(shared=True)
|
|
else:
|
|
self.cache = None
|
|
|
|
def _build_loader(
|
|
self, path: str, loader_type: str
|
|
) -> Mapping[str, Union[np.ndarray, torch.Tensor, str, numbers.Number]]:
|
|
"""Helper function to instantiate Loader.
|
|
|
|
Args:
|
|
path: The file path
|
|
loader_type: loader_type. sound, npy, text_int, text_float, etc
|
|
"""
|
|
for key, dic in DATA_TYPES.items():
|
|
# e.g. loader_type="sound"
|
|
# -> return DATA_TYPES["sound"]["func"](path)
|
|
if re.match(key, loader_type):
|
|
kwargs = {}
|
|
for key2 in dic["kwargs"]:
|
|
if key2 == "loader_type":
|
|
kwargs["loader_type"] = loader_type
|
|
elif key2 == "dest_sample_rate" and loader_type=="sound":
|
|
kwargs["dest_sample_rate"] = self.dest_sample_rate
|
|
elif key2 == "float_dtype":
|
|
kwargs["float_dtype"] = self.float_dtype
|
|
elif key2 == "int_dtype":
|
|
kwargs["int_dtype"] = self.int_dtype
|
|
elif key2 == "max_cache_fd":
|
|
kwargs["max_cache_fd"] = self.max_cache_fd
|
|
else:
|
|
raise RuntimeError(f"Not implemented keyword argument: {key2}")
|
|
|
|
func = dic["func"]
|
|
try:
|
|
return func(path, **kwargs)
|
|
except Exception:
|
|
if hasattr(func, "__name__"):
|
|
name = func.__name__
|
|
else:
|
|
name = str(func)
|
|
logging.error(f"An error happened with {name}({path})")
|
|
raise
|
|
else:
|
|
raise RuntimeError(f"Not supported: loader_type={loader_type}")
|
|
|
|
def has_name(self, name) -> bool:
|
|
return name in self.loader_dict
|
|
|
|
def names(self) -> Tuple[str, ...]:
|
|
return tuple(self.loader_dict)
|
|
|
|
def __iter__(self):
|
|
return iter(next(iter(self.loader_dict.values())))
|
|
|
|
def __repr__(self):
|
|
_mes = self.__class__.__name__
|
|
_mes += "("
|
|
for name, (path, _type) in self.debug_info.items():
|
|
_mes += f'\n {name}: {{"path": "{path}", "type": "{_type}"}}'
|
|
_mes += f"\n preprocess: {self.preprocess})"
|
|
return _mes
|
|
|
|
def __getitem__(self, uid: Union[str, int]) -> Tuple[str, Dict[str, np.ndarray]]:
|
|
|
|
# Change integer-id to string-id
|
|
if isinstance(uid, int):
|
|
d = next(iter(self.loader_dict.values()))
|
|
uid = list(d)[uid]
|
|
|
|
if self.cache is not None and uid in self.cache:
|
|
data = self.cache[uid]
|
|
return uid, data
|
|
|
|
data = {}
|
|
# 1. Load data from each loaders
|
|
for name, loader in self.loader_dict.items():
|
|
try:
|
|
value = loader[uid]
|
|
if isinstance(value, (list, tuple)):
|
|
value = np.array(value)
|
|
if not isinstance(
|
|
value, (np.ndarray, torch.Tensor, str, numbers.Number)
|
|
):
|
|
raise TypeError(
|
|
f"Must be ndarray, torch.Tensor, str or Number: {type(value)}"
|
|
)
|
|
except Exception:
|
|
path, _type = self.debug_info[name]
|
|
logging.error(
|
|
f"Error happened with path={path}, type={_type}, id={uid}"
|
|
)
|
|
raise
|
|
|
|
# torch.Tensor is converted to ndarray
|
|
if isinstance(value, torch.Tensor):
|
|
value = value.numpy()
|
|
elif isinstance(value, numbers.Number):
|
|
value = np.array([value])
|
|
data[name] = value
|
|
|
|
# 2. [Option] Apply preprocessing
|
|
# e.g. funasr.train.preprocessor:CommonPreprocessor
|
|
if self.preprocess is not None:
|
|
data = self.preprocess(uid, data)
|
|
|
|
# 3. Force data-precision
|
|
for name in data:
|
|
value = data[name]
|
|
if not isinstance(value, np.ndarray):
|
|
raise RuntimeError(
|
|
f"All values must be converted to np.ndarray object "
|
|
f'by preprocessing, but "{name}" is still {type(value)}.'
|
|
)
|
|
|
|
# Cast to desired type
|
|
if value.dtype.kind == "f":
|
|
value = value.astype(self.float_dtype)
|
|
elif value.dtype.kind == "i":
|
|
value = value.astype(self.int_dtype)
|
|
else:
|
|
raise NotImplementedError(f"Not supported dtype: {value.dtype}")
|
|
data[name] = value
|
|
|
|
if self.cache is not None and self.cache.size < self.max_cache_size:
|
|
self.cache[uid] = data
|
|
|
|
retval = uid, data
|
|
return retval
|