FunASR是一个基础语音识别工具包,提供多种功能,包括语音识别(ASR)、语音端点检测(VAD)、标点恢复、语言模型、说话人验证、说话人分离和多人对话语音识别等。FunASR提供了便捷的脚本和教程,支持预训练好的模型的推理与微调。
Go to file
2022-12-02 23:35:05 +08:00
egs/aishell update details 2022-11-29 14:26:55 +08:00
egs_modelscope update modelscope details 2022-12-02 22:43:13 +08:00
funasr Fix some issue to make batch inference easy for predictor and decoder. 2022-12-02 12:00:22 +08:00
image create 2022-11-26 21:56:51 +08:00
LICENSE create 2022-11-26 21:56:51 +08:00
README.md update details 2022-11-29 12:57:21 +08:00
setup.py create 2022-11-26 21:56:51 +08:00

FunASR: A Fundamental End-to-End Speech Recognition Toolkit

FunASR hopes to build a bridge between academic research and industrial applications on speech recognition. By supporting the training & finetuning of the industrial-grade speech recognition model released on ModelScope, researchers and developers can conduct research and production of speech recognition models more conveniently, and promote the development of speech recognition ecology. ASR for Fun

Installation(Training and Developing)

  • Clone the repo:
git clone https://github.com/alibaba/FunASR.git
  • Install Conda:
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
sh Miniconda3-latest-Linux-x86_64.sh
conda create -n funasr python=3.7
conda activate funasr
  • Install Pytorch (version >= 1.7.0):
cuda
9.2 conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=9.2 -c pytorch
10.2 conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=10.2 -c pytorch
11.1 conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch

For more versions, please see https://pytorch.org/get-started/locally/

  • Install ModelScope:
pip install "modelscope[audio]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
  • Install other packages:
pip install --editable ./

Contact

If you have any questions about FunASR, please contact us by

Acknowledge

  1. We borrowed a lot of code from Kaldi for data preparation.
  2. We borrowed a lot of code from ESPnet. FunASR follows up the training and finetuning pipelines of ESPnet.
  3. We referred Wenet for building dataloader for large scale data training.

License

This project is licensed under the The MIT License. FunASR also contains various third-party components and some code modified from other repos under other open source licenses.

Citations

@inproceedings{gao2020universal,
  title={Universal ASR: Unifying Streaming and Non-Streaming ASR Using a Single Encoder-Decoder Model},
  author={Gao, Zhifu and Zhang, Shiliang and Lei, Ming and McLoughlin, Ian},
  booktitle={arXiv preprint arXiv:2010.14099},
  year={2020}
}

@inproceedings{gao2022paraformer,
  title={Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition},
  author={Gao, Zhifu and Zhang, Shiliang and McLoughlin, Ian and Yan, Zhijie},
  booktitle={INTERSPEECH},
  year={2022}
}