mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
36 lines
1.0 KiB
Python
Executable File
36 lines
1.0 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# -*- encoding: utf-8 -*-
|
|
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
|
# MIT License (https://opensource.org/licenses/MIT)
|
|
|
|
from funasr import AutoModel
|
|
|
|
model = AutoModel(model="iic/LCB-NET",
|
|
model_revision="v1.0.0")
|
|
|
|
|
|
# example1
|
|
res = model.generate(input='["~/.cache/modelscope/hub/iic/LCB-NET/example/asr_example.wav","~/.cache/modelscope/hub/iic/LCB-NET/example/ocr.txt"]',data_type='["sound", "text"]')
|
|
|
|
print(res)
|
|
|
|
|
|
'''
|
|
# tensor or numpy as input
|
|
# example2
|
|
import torchaudio
|
|
import os
|
|
wav_file = os.path.join(model.model_path, "example/asr_example.wav")
|
|
input_tensor, sample_rate = torchaudio.load(wav_file)
|
|
input_tensor = input_tensor.mean(0)
|
|
res = model.generate(input=[input_tensor], batch_size_s=300, is_final=True)
|
|
|
|
|
|
# example3
|
|
import soundfile
|
|
|
|
wav_file = os.path.join(model.model_path, "example/asr_example.wav")
|
|
speech, sample_rate = soundfile.read(wav_file)
|
|
res = model.generate(input=[speech], batch_size_s=300, is_final=True)
|
|
'''
|