FunASR/examples/industrial_data_pretraining/lcbnet/demo.py
2024-03-04 15:45:53 +08:00

36 lines
1.0 KiB
Python
Executable File

#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
from funasr import AutoModel
model = AutoModel(model="iic/LCB-NET",
model_revision="v1.0.0")
# example1
res = model.generate(input='["~/.cache/modelscope/hub/iic/LCB-NET/example/asr_example.wav","~/.cache/modelscope/hub/iic/LCB-NET/example/ocr.txt"]',data_type='["sound", "text"]')
print(res)
'''
# tensor or numpy as input
# example2
import torchaudio
import os
wav_file = os.path.join(model.model_path, "example/asr_example.wav")
input_tensor, sample_rate = torchaudio.load(wav_file)
input_tensor = input_tensor.mean(0)
res = model.generate(input=[input_tensor], batch_size_s=300, is_final=True)
# example3
import soundfile
wav_file = os.path.join(model.model_path, "example/asr_example.wav")
speech, sample_rate = soundfile.read(wav_file)
res = model.generate(input=[speech], batch_size_s=300, is_final=True)
'''