FunASR/runtime/python/onnxruntime/demo_vad_online.py
zhifu gao 861147c730
Dev gzf exp (#1654)
* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* bugfix

* update with main (#1631)

* update seaco finetune

* v1.0.24

---------

Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>

* sensevoice

* sensevoice

* sensevoice

* update with main (#1638)

* update seaco finetune

* v1.0.24

* update rwkv template

---------

Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* whisper

* whisper

* update style

* update style

---------

Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>
2024-04-24 16:03:38 +08:00

32 lines
924 B
Python

from funasr_onnx import Fsmn_vad_online
import soundfile
from pathlib import Path
model_dir = "damo/speech_fsmn_vad_zh-cn-16k-common-pytorch"
wav_path = "{}/.cache/modelscope/hub/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/example/vad_example.wav".format(
Path.home()
)
model = Fsmn_vad_online(model_dir)
##online vad
speech, sample_rate = soundfile.read(wav_path)
speech_length = speech.shape[0]
#
sample_offset = 0
step = 1600
param_dict = {"in_cache": []}
for sample_offset in range(0, speech_length, min(step, speech_length - sample_offset)):
if sample_offset + step >= speech_length - 1:
step = speech_length - sample_offset
is_final = True
else:
is_final = False
param_dict["is_final"] = is_final
segments_result = model(
audio_in=speech[sample_offset : sample_offset + step], param_dict=param_dict
)
if segments_result:
print(segments_result)