FunASR/funasr/utils/misc.py
zhifu gao 861147c730
Dev gzf exp (#1654)
* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* bugfix

* update with main (#1631)

* update seaco finetune

* v1.0.24

---------

Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>

* sensevoice

* sensevoice

* sensevoice

* update with main (#1638)

* update seaco finetune

* v1.0.24

* update rwkv template

---------

Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* whisper

* whisper

* update style

* update style

---------

Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>
2024-04-24 16:03:38 +08:00

81 lines
2.5 KiB
Python

import os
import io
import shutil
import logging
from collections import OrderedDict
import numpy as np
from omegaconf import DictConfig, OmegaConf
def statistic_model_parameters(model, prefix=None):
var_dict = model.state_dict()
numel = 0
for i, key in enumerate(
sorted(list([x for x in var_dict.keys() if "num_batches_tracked" not in x]))
):
if prefix is None or key.startswith(prefix):
numel += var_dict[key].numel()
return numel
def int2vec(x, vec_dim=8, dtype=np.int32):
b = ("{:0" + str(vec_dim) + "b}").format(x)
# little-endian order: lower bit first
return (np.array(list(b)[::-1]) == "1").astype(dtype)
def seq2arr(seq, vec_dim=8):
return np.row_stack([int2vec(int(x), vec_dim) for x in seq])
def load_scp_as_dict(scp_path, value_type="str", kv_sep=" "):
with io.open(scp_path, "r", encoding="utf-8") as f:
ret_dict = OrderedDict()
for one_line in f.readlines():
one_line = one_line.strip()
pos = one_line.find(kv_sep)
key, value = one_line[:pos], one_line[pos + 1 :]
if value_type == "list":
value = value.split(" ")
ret_dict[key] = value
return ret_dict
def load_scp_as_list(scp_path, value_type="str", kv_sep=" "):
with io.open(scp_path, "r", encoding="utf8") as f:
ret_dict = []
for one_line in f.readlines():
one_line = one_line.strip()
pos = one_line.find(kv_sep)
key, value = one_line[:pos], one_line[pos + 1 :]
if value_type == "list":
value = value.split(" ")
ret_dict.append((key, value))
return ret_dict
def deep_update(original, update):
for key, value in update.items():
if isinstance(value, dict) and key in original:
if len(value) == 0:
original[key] = value
deep_update(original[key], value)
else:
original[key] = value
def prepare_model_dir(**kwargs):
os.makedirs(kwargs.get("output_dir", "./"), exist_ok=True)
yaml_file = os.path.join(kwargs.get("output_dir", "./"), "config.yaml")
OmegaConf.save(config=kwargs, f=yaml_file)
print(kwargs)
logging.info("config.yaml is saved to: %s", yaml_file)
# model_path = kwargs.get("model_path")
# if model_path is not None:
# config_json = os.path.join(model_path, "configuration.json")
# if os.path.exists(config_json):
# shutil.copy(config_json, os.path.join(kwargs.get("output_dir", "./"), "configuration.json"))