mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
* v0.8.7
* update cmd version
* set openfst HAVE_BIN/HAVE_SCRIPT off for win32
* 修复为支持新版本的热词 (#1137)
* update CMakeLists.txt
* Revert "update CMakeLists.txt"
This reverts commit 54bcd1f674.
* rm log.h for wins-websocket
* fix bug of websocket lock blocking
* update funasr-wss-server
* update model-revision by model name
* update funasr-wss-server-2pass
* 增加分角色语音识别对ERes2Net模型的支持。
* Update README.md (#1140)
minor fix
* automatically configure parameters such as decoder-thread-num
* update docs
* update docs
* update docs
* 分角色语音识别支持更多的模型
* update spk inference
* remove never use code (#1151)
---------
Co-authored-by: 雾聪 <wucong.lyb@alibaba-inc.com>
Co-authored-by: 夜雨飘零 <yeyupiaoling@foxmail.com>
Co-authored-by: Ikko Eltociear Ashimine <eltociear@gmail.com>
Co-authored-by: Shi Xian <40013335+R1ckShi@users.noreply.github.com>
Co-authored-by: shixian.shi <shixian.shi@alibaba-inc.com>
206 lines
6.6 KiB
Python
206 lines
6.6 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
""" Some implementations are adapted from https://github.com/yuyq96/D-TDNN
|
|
"""
|
|
|
|
import io
|
|
from typing import Union
|
|
|
|
import librosa as sf
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torchaudio.compliance.kaldi as Kaldi
|
|
from torch import nn
|
|
|
|
from funasr.utils.modelscope_file import File
|
|
|
|
|
|
def check_audio_list(audio: list):
|
|
audio_dur = 0
|
|
for i in range(len(audio)):
|
|
seg = audio[i]
|
|
assert seg[1] >= seg[0], 'modelscope error: Wrong time stamps.'
|
|
assert isinstance(seg[2], np.ndarray), 'modelscope error: Wrong data type.'
|
|
assert int(seg[1] * 16000) - int(
|
|
seg[0] * 16000
|
|
) == seg[2].shape[
|
|
0], 'modelscope error: audio data in list is inconsistent with time length.'
|
|
if i > 0:
|
|
assert seg[0] >= audio[
|
|
i - 1][1], 'modelscope error: Wrong time stamps.'
|
|
audio_dur += seg[1] - seg[0]
|
|
return audio_dur
|
|
# assert audio_dur > 5, 'modelscope error: The effective audio duration is too short.'
|
|
|
|
|
|
def sv_preprocess(inputs: Union[np.ndarray, list]):
|
|
output = []
|
|
for i in range(len(inputs)):
|
|
if isinstance(inputs[i], str):
|
|
file_bytes = File.read(inputs[i])
|
|
data, fs = sf.load(io.BytesIO(file_bytes), dtype='float32')
|
|
if len(data.shape) == 2:
|
|
data = data[:, 0]
|
|
data = torch.from_numpy(data).unsqueeze(0)
|
|
data = data.squeeze(0)
|
|
elif isinstance(inputs[i], np.ndarray):
|
|
assert len(
|
|
inputs[i].shape
|
|
) == 1, 'modelscope error: Input array should be [N, T]'
|
|
data = inputs[i]
|
|
if data.dtype in ['int16', 'int32', 'int64']:
|
|
data = (data / (1 << 15)).astype('float32')
|
|
else:
|
|
data = data.astype('float32')
|
|
data = torch.from_numpy(data)
|
|
else:
|
|
raise ValueError(
|
|
'modelscope error: The input type is restricted to audio address and nump array.'
|
|
)
|
|
output.append(data)
|
|
return output
|
|
|
|
|
|
def sv_chunk(vad_segments: list, fs = 16000) -> list:
|
|
config = {
|
|
'seg_dur': 1.5,
|
|
'seg_shift': 0.75,
|
|
}
|
|
def seg_chunk(seg_data):
|
|
seg_st = seg_data[0]
|
|
data = seg_data[2]
|
|
chunk_len = int(config['seg_dur'] * fs)
|
|
chunk_shift = int(config['seg_shift'] * fs)
|
|
last_chunk_ed = 0
|
|
seg_res = []
|
|
for chunk_st in range(0, data.shape[0], chunk_shift):
|
|
chunk_ed = min(chunk_st + chunk_len, data.shape[0])
|
|
if chunk_ed <= last_chunk_ed:
|
|
break
|
|
last_chunk_ed = chunk_ed
|
|
chunk_st = max(0, chunk_ed - chunk_len)
|
|
chunk_data = data[chunk_st:chunk_ed]
|
|
if chunk_data.shape[0] < chunk_len:
|
|
chunk_data = np.pad(chunk_data,
|
|
(0, chunk_len - chunk_data.shape[0]),
|
|
'constant')
|
|
seg_res.append([
|
|
chunk_st / fs + seg_st, chunk_ed / fs + seg_st,
|
|
chunk_data
|
|
])
|
|
return seg_res
|
|
|
|
segs = []
|
|
for i, s in enumerate(vad_segments):
|
|
segs.extend(seg_chunk(s))
|
|
|
|
return segs
|
|
|
|
|
|
def extract_feature(audio):
|
|
features = []
|
|
for au in audio:
|
|
feature = Kaldi.fbank(
|
|
au.unsqueeze(0), num_mel_bins=80)
|
|
feature = feature - feature.mean(dim=0, keepdim=True)
|
|
features.append(feature.unsqueeze(0))
|
|
features = torch.cat(features)
|
|
return features
|
|
|
|
|
|
def postprocess(segments: list, vad_segments: list,
|
|
labels: np.ndarray, embeddings: np.ndarray) -> list:
|
|
assert len(segments) == len(labels)
|
|
labels = correct_labels(labels)
|
|
distribute_res = []
|
|
for i in range(len(segments)):
|
|
distribute_res.append([segments[i][0], segments[i][1], labels[i]])
|
|
# merge the same speakers chronologically
|
|
distribute_res = merge_seque(distribute_res)
|
|
|
|
# accquire speaker center
|
|
spk_embs = []
|
|
for i in range(labels.max() + 1):
|
|
spk_emb = embeddings[labels == i].mean(0)
|
|
spk_embs.append(spk_emb)
|
|
spk_embs = np.stack(spk_embs)
|
|
|
|
def is_overlapped(t1, t2):
|
|
if t1 > t2 + 1e-4:
|
|
return True
|
|
return False
|
|
|
|
# distribute the overlap region
|
|
for i in range(1, len(distribute_res)):
|
|
if is_overlapped(distribute_res[i - 1][1], distribute_res[i][0]):
|
|
p = (distribute_res[i][0] + distribute_res[i - 1][1]) / 2
|
|
distribute_res[i][0] = p
|
|
distribute_res[i - 1][1] = p
|
|
|
|
# smooth the result
|
|
distribute_res = smooth(distribute_res)
|
|
|
|
return distribute_res
|
|
|
|
|
|
def correct_labels(labels):
|
|
labels_id = 0
|
|
id2id = {}
|
|
new_labels = []
|
|
for i in labels:
|
|
if i not in id2id:
|
|
id2id[i] = labels_id
|
|
labels_id += 1
|
|
new_labels.append(id2id[i])
|
|
return np.array(new_labels)
|
|
|
|
def merge_seque(distribute_res):
|
|
res = [distribute_res[0]]
|
|
for i in range(1, len(distribute_res)):
|
|
if distribute_res[i][2] != res[-1][2] or distribute_res[i][
|
|
0] > res[-1][1]:
|
|
res.append(distribute_res[i])
|
|
else:
|
|
res[-1][1] = distribute_res[i][1]
|
|
return res
|
|
|
|
def smooth(res, mindur=1):
|
|
# short segments are assigned to nearest speakers.
|
|
for i in range(len(res)):
|
|
res[i][0] = round(res[i][0], 2)
|
|
res[i][1] = round(res[i][1], 2)
|
|
if res[i][1] - res[i][0] < mindur:
|
|
if i == 0:
|
|
res[i][2] = res[i + 1][2]
|
|
elif i == len(res) - 1:
|
|
res[i][2] = res[i - 1][2]
|
|
elif res[i][0] - res[i - 1][1] <= res[i + 1][0] - res[i][1]:
|
|
res[i][2] = res[i - 1][2]
|
|
else:
|
|
res[i][2] = res[i + 1][2]
|
|
# merge the speakers
|
|
res = merge_seque(res)
|
|
|
|
return res
|
|
|
|
|
|
def distribute_spk(sentence_list, sd_time_list):
|
|
sd_sentence_list = []
|
|
for d in sentence_list:
|
|
sentence_start = d['ts_list'][0][0]
|
|
sentence_end = d['ts_list'][-1][1]
|
|
sentence_spk = 0
|
|
max_overlap = 0
|
|
for sd_time in sd_time_list:
|
|
spk_st, spk_ed, spk = sd_time
|
|
spk_st = spk_st*1000
|
|
spk_ed = spk_ed*1000
|
|
overlap = max(
|
|
min(sentence_end, spk_ed) - max(sentence_start, spk_st), 0)
|
|
if overlap > max_overlap:
|
|
max_overlap = overlap
|
|
sentence_spk = spk
|
|
d['spk'] = sentence_spk
|
|
sd_sentence_list.append(d)
|
|
return sd_sentence_list
|