FunASR/funasr/models/e2e_diar_sond.py

483 lines
20 KiB
Python

#!/usr/bin/env python3
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
from contextlib import contextmanager
from distutils.version import LooseVersion
from itertools import permutations
from typing import Dict
from typing import Optional
from typing import Tuple, List
import numpy as np
import torch
from torch.nn import functional as F
from typeguard import check_argument_types
from funasr.modules.nets_utils import to_device
from funasr.modules.nets_utils import make_pad_mask
from funasr.models.decoder.abs_decoder import AbsDecoder
from funasr.models.encoder.abs_encoder import AbsEncoder
from funasr.models.frontend.abs_frontend import AbsFrontend
from funasr.models.specaug.abs_specaug import AbsSpecAug
from funasr.layers.abs_normalize import AbsNormalize
from funasr.torch_utils.device_funcs import force_gatherable
from funasr.train.abs_espnet_model import AbsESPnetModel
from funasr.losses.label_smoothing_loss import LabelSmoothingLoss, SequenceBinaryCrossEntropy
from funasr.utils.misc import int2vec
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
from torch.cuda.amp import autocast
else:
# Nothing to do if torch<1.6.0
@contextmanager
def autocast(enabled=True):
yield
class DiarSondModel(AbsESPnetModel):
"""Speaker overlap-aware neural diarization model
reference: https://arxiv.org/abs/2211.10243
"""
def __init__(
self,
vocab_size: int,
frontend: Optional[AbsFrontend],
specaug: Optional[AbsSpecAug],
normalize: Optional[AbsNormalize],
encoder: torch.nn.Module,
speaker_encoder: Optional[torch.nn.Module],
ci_scorer: torch.nn.Module,
cd_scorer: Optional[torch.nn.Module],
decoder: torch.nn.Module,
token_list: list,
lsm_weight: float = 0.1,
length_normalized_loss: bool = False,
max_spk_num: int = 16,
label_aggregator: Optional[torch.nn.Module] = None,
normalize_speech_speaker: bool = False,
ignore_id: int = -1,
speaker_discrimination_loss_weight: float = 1.0,
inter_score_loss_weight: float = 0.0
):
assert check_argument_types()
super().__init__()
self.encoder = encoder
self.speaker_encoder = speaker_encoder
self.ci_scorer = ci_scorer
self.cd_scorer = cd_scorer
self.normalize = normalize
self.frontend = frontend
self.specaug = specaug
self.label_aggregator = label_aggregator
self.decoder = decoder
self.token_list = token_list
self.max_spk_num = max_spk_num
self.normalize_speech_speaker = normalize_speech_speaker
self.ignore_id = ignore_id
self.criterion_diar = LabelSmoothingLoss(
size=vocab_size,
padding_idx=ignore_id,
smoothing=lsm_weight,
normalize_length=length_normalized_loss,
)
self.criterion_bce = SequenceBinaryCrossEntropy(normalize_length=length_normalized_loss)
self.pse_embedding = self.generate_pse_embedding()
# self.register_buffer("pse_embedding", pse_embedding)
self.power_weight = torch.from_numpy(2 ** np.arange(max_spk_num)[np.newaxis, np.newaxis, :]).float()
# self.register_buffer("power_weight", power_weight)
self.int_token_arr = torch.from_numpy(np.array(self.token_list).astype(int)[np.newaxis, np.newaxis, :]).int()
# self.register_buffer("int_token_arr", int_token_arr)
self.speaker_discrimination_loss_weight = speaker_discrimination_loss_weight
self.inter_score_loss_weight = inter_score_loss_weight
self.forward_steps = 0
def generate_pse_embedding(self):
embedding = np.zeros((len(self.token_list), self.max_spk_num), dtype=np.float)
for idx, pse_label in enumerate(self.token_list):
emb = int2vec(int(pse_label), vec_dim=self.max_spk_num, dtype=np.float)
embedding[idx] = emb
return torch.from_numpy(embedding)
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor = None,
profile: torch.Tensor = None,
profile_lengths: torch.Tensor = None,
binary_labels: torch.Tensor = None,
binary_labels_lengths: torch.Tensor = None,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Frontend + Encoder + Speaker Encoder + CI Scorer + CD Scorer + Decoder + Calc loss
Args:
speech: (Batch, samples) or (Batch, frames, input_size)
speech_lengths: (Batch,) default None for chunk interator,
because the chunk-iterator does not
have the speech_lengths returned.
see in
espnet2/iterators/chunk_iter_factory.py
profile: (Batch, N_spk, dim)
profile_lengths: (Batch,)
binary_labels: (Batch, frames, max_spk_num)
binary_labels_lengths: (Batch,)
"""
assert speech.shape[0] == binary_labels.shape[0], (speech.shape, binary_labels.shape)
batch_size = speech.shape[0]
self.forward_steps = self.forward_steps + 1
# 1. Network forward
pred, inter_outputs = self.prediction_forward(
speech, speech_lengths,
profile, profile_lengths,
return_inter_outputs=True
)
(speech, speech_lengths), (profile, profile_lengths), (ci_score, cd_score) = inter_outputs
# 2. Aggregate time-domain labels to match forward outputs
if self.label_aggregator is not None:
binary_labels, binary_labels_lengths = self.label_aggregator(
binary_labels, binary_labels_lengths
)
# 2. Calculate power-set encoding (PSE) labels
raw_pse_labels = torch.sum(binary_labels * self.power_weight, dim=2, keepdim=True)
pse_labels = torch.argmax((raw_pse_labels.int() == self.int_token_arr).float(), dim=2)
# If encoder uses conv* as input_layer (i.e., subsampling),
# the sequence length of 'pred' might be slightly less than the
# length of 'spk_labels'. Here we force them to be equal.
length_diff_tolerance = 2
length_diff = pse_labels.shape[1] - pred.shape[1]
if 0 < length_diff <= length_diff_tolerance:
pse_labels = pse_labels[:, 0: pred.shape[1]]
loss_diar = self.classification_loss(pred, pse_labels, binary_labels_lengths)
loss_spk_dis = self.speaker_discrimination_loss(profile, profile_lengths)
loss_inter_ci, loss_inter_cd = self.internal_score_loss(cd_score, ci_score, pse_labels, binary_labels_lengths)
label_mask = make_pad_mask(binary_labels_lengths, maxlen=pse_labels.shape[1]).to(pse_labels.device)
loss = (loss_diar + self.speaker_discrimination_loss_weight * loss_spk_dis
+ self.inter_score_loss_weight * (loss_inter_ci + loss_inter_cd))
(
correct,
num_frames,
speech_scored,
speech_miss,
speech_falarm,
speaker_scored,
speaker_miss,
speaker_falarm,
speaker_error,
) = self.calc_diarization_error(
pred=F.embedding(pred.argmax(dim=2) * (~label_mask), self.pse_embedding),
label=F.embedding(pse_labels * (~label_mask), self.pse_embedding),
length=binary_labels_lengths
)
if speech_scored > 0 and num_frames > 0:
sad_mr, sad_fr, mi, fa, cf, acc, der = (
speech_miss / speech_scored,
speech_falarm / speech_scored,
speaker_miss / speaker_scored,
speaker_falarm / speaker_scored,
speaker_error / speaker_scored,
correct / num_frames,
(speaker_miss + speaker_falarm + speaker_error) / speaker_scored,
)
else:
sad_mr, sad_fr, mi, fa, cf, acc, der = 0, 0, 0, 0, 0, 0, 0
stats = dict(
loss=loss.detach(),
loss_diar=loss_diar.detach() if loss_diar is not None else None,
loss_spk_dis=loss_spk_dis.detach() if loss_spk_dis is not None else None,
loss_inter_ci=loss_inter_ci.detach() if loss_inter_ci is not None else None,
loss_inter_cd=loss_inter_cd.detach() if loss_inter_cd is not None else None,
sad_mr=sad_mr,
sad_fr=sad_fr,
mi=mi,
fa=fa,
cf=cf,
acc=acc,
der=der,
forward_steps=self.forward_steps,
)
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def classification_loss(
self,
predictions: torch.Tensor,
labels: torch.Tensor,
prediction_lengths: torch.Tensor
) -> torch.Tensor:
mask = make_pad_mask(prediction_lengths, maxlen=labels.shape[1])
pad_labels = labels.masked_fill(
mask.to(predictions.device),
value=self.ignore_id
)
loss = self.criterion_diar(predictions.contiguous(), pad_labels)
return loss
def speaker_discrimination_loss(
self,
profile: torch.Tensor,
profile_lengths: torch.Tensor
) -> torch.Tensor:
profile_mask = (torch.linalg.norm(profile, ord=2, dim=2, keepdim=True) > 0).float() # (B, N, 1)
mask = torch.matmul(profile_mask, profile_mask.transpose(1, 2)) # (B, N, N)
mask = mask * (1.0 - torch.eye(self.max_spk_num).unsqueeze(0).to(mask))
eps = 1e-12
coding_norm = torch.linalg.norm(
profile * profile_mask + (1 - profile_mask) * eps,
dim=2, keepdim=True
) * profile_mask
# profile: Batch, N, dim
cos_theta = F.cosine_similarity(profile.unsqueeze(2), profile.unsqueeze(1), dim=-1, eps=eps) * mask
cos_theta = torch.clip(cos_theta, -1 + eps, 1 - eps)
loss = (F.relu(mask * coding_norm * (cos_theta - 0.0))).sum() / mask.sum()
return loss
def calculate_multi_labels(self, pse_labels, pse_labels_lengths):
mask = make_pad_mask(pse_labels_lengths, maxlen=pse_labels.shape[1])
padding_labels = pse_labels.masked_fill(
mask.to(pse_labels.device),
value=0
).to(pse_labels)
multi_labels = F.embedding(padding_labels, self.pse_embedding)
return multi_labels
def internal_score_loss(
self,
cd_score: torch.Tensor,
ci_score: torch.Tensor,
pse_labels: torch.Tensor,
pse_labels_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
multi_labels = self.calculate_multi_labels(pse_labels, pse_labels_lengths)
ci_loss = self.criterion_bce(ci_score, multi_labels, pse_labels_lengths)
cd_loss = self.criterion_bce(cd_score, multi_labels, pse_labels_lengths)
return ci_loss, cd_loss
def collect_feats(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
profile: torch.Tensor = None,
profile_lengths: torch.Tensor = None,
binary_labels: torch.Tensor = None,
binary_labels_lengths: torch.Tensor = None,
) -> Dict[str, torch.Tensor]:
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
return {"feats": feats, "feats_lengths": feats_lengths}
def encode_speaker(
self,
profile: torch.Tensor,
profile_lengths: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
with autocast(False):
if profile.shape[1] < self.max_spk_num:
profile = F.pad(profile, [0, 0, 0, self.max_spk_num-profile.shape[1], 0, 0], "constant", 0.0)
profile_mask = (torch.linalg.norm(profile, ord=2, dim=2, keepdim=True) > 0).float()
profile = F.normalize(profile, dim=2)
if self.speaker_encoder is not None:
profile = self.speaker_encoder(profile, profile_lengths)[0]
return profile * profile_mask, profile_lengths
else:
return profile, profile_lengths
def encode_speech(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
if self.encoder is not None:
speech, speech_lengths = self.encode(speech, speech_lengths)
speech_mask = ~make_pad_mask(speech_lengths, maxlen=speech.shape[1])
speech_mask = speech_mask.to(speech.device).unsqueeze(-1).float()
return speech * speech_mask, speech_lengths
else:
return speech, speech_lengths
@staticmethod
def concate_speech_ivc(
speech: torch.Tensor,
ivc: torch.Tensor
) -> torch.Tensor:
nn, tt = ivc.shape[1], speech.shape[1]
speech = speech.unsqueeze(dim=1) # B x 1 x T x D
speech = speech.expand(-1, nn, -1, -1) # B x N x T x D
ivc = ivc.unsqueeze(dim=2) # B x N x 1 x D
ivc = ivc.expand(-1, -1, tt, -1) # B x N x T x D
sd_in = torch.cat([speech, ivc], dim=3) # B x N x T x 2D
return sd_in
def calc_similarity(
self,
speech_encoder_outputs: torch.Tensor,
speaker_encoder_outputs: torch.Tensor,
seq_len: torch.Tensor = None,
spk_len: torch.Tensor = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
bb, tt = speech_encoder_outputs.shape[0], speech_encoder_outputs.shape[1]
d_sph, d_spk = speech_encoder_outputs.shape[2], speaker_encoder_outputs.shape[2]
if self.normalize_speech_speaker:
speech_encoder_outputs = F.normalize(speech_encoder_outputs, dim=2)
speaker_encoder_outputs = F.normalize(speaker_encoder_outputs, dim=2)
ge_in = self.concate_speech_ivc(speech_encoder_outputs, speaker_encoder_outputs)
ge_in = torch.reshape(ge_in, [bb * self.max_spk_num, tt, d_sph + d_spk])
ge_len = seq_len.unsqueeze(1).expand(-1, self.max_spk_num)
ge_len = torch.reshape(ge_len, [bb * self.max_spk_num])
cd_simi = self.cd_scorer(ge_in, ge_len)[0]
cd_simi = torch.reshape(cd_simi, [bb, self.max_spk_num, tt, 1])
cd_simi = cd_simi.squeeze(dim=3).permute([0, 2, 1])
if isinstance(self.ci_scorer, AbsEncoder):
ci_simi = self.ci_scorer(ge_in, ge_len)[0]
ci_simi = torch.reshape(ci_simi, [bb, self.max_spk_num, tt]).permute([0, 2, 1])
else:
ci_simi = self.ci_scorer(speech_encoder_outputs, speaker_encoder_outputs)
return ci_simi, cd_simi
def post_net_forward(self, simi, seq_len):
logits = self.decoder(simi, seq_len)[0]
return logits
def prediction_forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
profile: torch.Tensor,
profile_lengths: torch.Tensor,
return_inter_outputs: bool = False,
) -> [torch.Tensor, Optional[list]]:
# speech encoding
speech, speech_lengths = self.encode_speech(speech, speech_lengths)
# speaker encoding
profile, profile_lengths = self.encode_speaker(profile, profile_lengths)
# calculating similarity
ci_simi, cd_simi = self.calc_similarity(speech, profile, speech_lengths, profile_lengths)
similarity = torch.cat([cd_simi, ci_simi], dim=2)
# post net forward
logits = self.post_net_forward(similarity, speech_lengths)
if return_inter_outputs:
return logits, [(speech, speech_lengths), (profile, profile_lengths), (ci_simi, cd_simi)]
return logits
def encode(
self, speech: torch.Tensor, speech_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Frontend + Encoder
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch,)
"""
with autocast(False):
# 1. Extract feats
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
# 2. Data augmentation
if self.specaug is not None and self.training:
feats, feats_lengths = self.specaug(feats, feats_lengths)
# 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
if self.normalize is not None:
feats, feats_lengths = self.normalize(feats, feats_lengths)
# 4. Forward encoder
# feats: (Batch, Length, Dim)
# -> encoder_out: (Batch, Length2, Dim)
encoder_outputs = self.encoder(feats, feats_lengths)
encoder_out, encoder_out_lens = encoder_outputs[:2]
assert encoder_out.size(0) == speech.size(0), (
encoder_out.size(),
speech.size(0),
)
assert encoder_out.size(1) <= encoder_out_lens.max(), (
encoder_out.size(),
encoder_out_lens.max(),
)
return encoder_out, encoder_out_lens
def _extract_feats(
self, speech: torch.Tensor, speech_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size = speech.shape[0]
speech_lengths = (
speech_lengths
if speech_lengths is not None
else torch.ones(batch_size).int() * speech.shape[1]
)
assert speech_lengths.dim() == 1, speech_lengths.shape
# for data-parallel
speech = speech[:, : speech_lengths.max()]
if self.frontend is not None:
# Frontend
# e.g. STFT and Feature extract
# data_loader may send time-domain signal in this case
# speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim)
feats, feats_lengths = self.frontend(speech, speech_lengths)
else:
# No frontend and no feature extract
feats, feats_lengths = speech, speech_lengths
return feats, feats_lengths
@staticmethod
def calc_diarization_error(pred, label, length):
# Note (jiatong): Credit to https://github.com/hitachi-speech/EEND
(batch_size, max_len, num_output) = label.size()
# mask the padding part
mask = ~make_pad_mask(length, maxlen=label.shape[1]).unsqueeze(-1).numpy()
# pred and label have the shape (batch_size, max_len, num_output)
label_np = label.data.cpu().numpy().astype(int)
pred_np = (pred.data.cpu().numpy() > 0).astype(int)
label_np = label_np * mask
pred_np = pred_np * mask
length = length.data.cpu().numpy()
# compute speech activity detection error
n_ref = np.sum(label_np, axis=2)
n_sys = np.sum(pred_np, axis=2)
speech_scored = float(np.sum(n_ref > 0))
speech_miss = float(np.sum(np.logical_and(n_ref > 0, n_sys == 0)))
speech_falarm = float(np.sum(np.logical_and(n_ref == 0, n_sys > 0)))
# compute speaker diarization error
speaker_scored = float(np.sum(n_ref))
speaker_miss = float(np.sum(np.maximum(n_ref - n_sys, 0)))
speaker_falarm = float(np.sum(np.maximum(n_sys - n_ref, 0)))
n_map = np.sum(np.logical_and(label_np == 1, pred_np == 1), axis=2)
speaker_error = float(np.sum(np.minimum(n_ref, n_sys) - n_map))
correct = float(1.0 * np.sum((label_np == pred_np) * mask) / num_output)
num_frames = np.sum(length)
return (
correct,
num_frames,
speech_scored,
speech_miss,
speech_falarm,
speaker_scored,
speaker_miss,
speaker_falarm,
speaker_error,
)