mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
95 lines
2.8 KiB
Python
95 lines
2.8 KiB
Python
import os
|
|
import torch
|
|
|
|
|
|
def export(model, data_in=None, quantize: bool = False, opset_version: int = 14, type='onnx', **kwargs):
|
|
model_scripts = model.export(**kwargs)
|
|
export_dir = kwargs.get("output_dir", os.path.dirname(kwargs.get("init_param")))
|
|
os.makedirs(export_dir, exist_ok=True)
|
|
|
|
if not isinstance(model_scripts, (list, tuple)):
|
|
model_scripts = (model_scripts,)
|
|
for m in model_scripts:
|
|
m.eval()
|
|
if type == 'onnx':
|
|
_onnx(
|
|
m,
|
|
data_in=data_in,
|
|
quantize=quantize,
|
|
opset_version=opset_version,
|
|
export_dir=export_dir,
|
|
**kwargs
|
|
)
|
|
elif type == 'torchscripts':
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
_torchscripts(
|
|
m,
|
|
path=export_dir,
|
|
device=device
|
|
)
|
|
print("output dir: {}".format(export_dir))
|
|
|
|
return export_dir
|
|
|
|
|
|
def _onnx(
|
|
model,
|
|
data_in=None,
|
|
quantize: bool = False,
|
|
opset_version: int = 14,
|
|
export_dir: str = None,
|
|
**kwargs
|
|
):
|
|
|
|
dummy_input = model.export_dummy_inputs()
|
|
|
|
verbose = kwargs.get("verbose", False)
|
|
|
|
export_name = model.export_name + '.onnx'
|
|
model_path = os.path.join(export_dir, export_name)
|
|
torch.onnx.export(
|
|
model,
|
|
dummy_input,
|
|
model_path,
|
|
verbose=verbose,
|
|
opset_version=opset_version,
|
|
input_names=model.export_input_names(),
|
|
output_names=model.export_output_names(),
|
|
dynamic_axes=model.export_dynamic_axes(),
|
|
)
|
|
|
|
if quantize:
|
|
from onnxruntime.quantization import QuantType, quantize_dynamic
|
|
import onnx
|
|
|
|
quant_model_path = model_path.replace(".onnx", "_quant.onnx")
|
|
if not os.path.exists(quant_model_path):
|
|
onnx_model = onnx.load(model_path)
|
|
nodes = [n.name for n in onnx_model.graph.node]
|
|
nodes_to_exclude = [
|
|
m for m in nodes if "output" in m or "bias_encoder" in m or "bias_decoder" in m
|
|
]
|
|
quantize_dynamic(
|
|
model_input=model_path,
|
|
model_output=quant_model_path,
|
|
op_types_to_quantize=["MatMul"],
|
|
per_channel=True,
|
|
reduce_range=False,
|
|
weight_type=QuantType.QUInt8,
|
|
nodes_to_exclude=nodes_to_exclude,
|
|
)
|
|
|
|
|
|
def _torchscripts(model, path, device='cuda'):
|
|
dummy_input = model.export_dummy_inputs()
|
|
|
|
if device == 'cuda':
|
|
model = model.cuda()
|
|
if isinstance(dummy_input, torch.Tensor):
|
|
dummy_input = dummy_input.cuda()
|
|
else:
|
|
dummy_input = tuple([i.cuda() for i in dummy_input])
|
|
|
|
model_script = torch.jit.trace(model, dummy_input)
|
|
model_script.save(os.path.join(path, f'{model.export_name}.torchscripts'))
|