mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
62 lines
1.7 KiB
Python
62 lines
1.7 KiB
Python
"""Length bonus module."""
|
|
from typing import Any
|
|
from typing import List
|
|
from typing import Tuple
|
|
|
|
import torch
|
|
|
|
from funasr.modules.scorers.scorer_interface import BatchScorerInterface
|
|
|
|
|
|
class LengthBonus(BatchScorerInterface):
|
|
"""Length bonus in beam search."""
|
|
|
|
def __init__(self, n_vocab: int):
|
|
"""Initialize class.
|
|
|
|
Args:
|
|
n_vocab (int): The number of tokens in vocabulary for beam search
|
|
|
|
"""
|
|
self.n = n_vocab
|
|
|
|
def score(self, y, state, x):
|
|
"""Score new token.
|
|
|
|
Args:
|
|
y (torch.Tensor): 1D torch.int64 prefix tokens.
|
|
state: Scorer state for prefix tokens
|
|
x (torch.Tensor): 2D encoder feature that generates ys.
|
|
|
|
Returns:
|
|
tuple[torch.Tensor, Any]: Tuple of
|
|
torch.float32 scores for next token (n_vocab)
|
|
and None
|
|
|
|
"""
|
|
return torch.tensor([1.0], device=x.device, dtype=x.dtype).expand(self.n), None
|
|
|
|
def batch_score(
|
|
self, ys: torch.Tensor, states: List[Any], xs: torch.Tensor
|
|
) -> Tuple[torch.Tensor, List[Any]]:
|
|
"""Score new token batch.
|
|
|
|
Args:
|
|
ys (torch.Tensor): torch.int64 prefix tokens (n_batch, ylen).
|
|
states (List[Any]): Scorer states for prefix tokens.
|
|
xs (torch.Tensor):
|
|
The encoder feature that generates ys (n_batch, xlen, n_feat).
|
|
|
|
Returns:
|
|
tuple[torch.Tensor, List[Any]]: Tuple of
|
|
batchfied scores for next token with shape of `(n_batch, n_vocab)`
|
|
and next state list for ys.
|
|
|
|
"""
|
|
return (
|
|
torch.tensor([1.0], device=xs.device, dtype=xs.dtype).expand(
|
|
ys.shape[0], self.n
|
|
),
|
|
None,
|
|
)
|