FunASR/egs_modelscope/wenetspeech/paraformer
2022-12-23 19:05:32 +08:00
..
modelscope_utils update FunASR version==0.1.4 2022-12-09 22:16:23 +08:00
utils update FunASR version==0.1.4 2022-12-09 22:16:23 +08:00
paraformer_large_infer.sh update inference config 2022-12-23 19:05:32 +08:00
path.sh create 2022-11-26 21:56:51 +08:00
README.md create 2022-11-26 21:56:51 +08:00
RESULTS.md create 2022-11-26 21:56:51 +08:00

ModelScope: Paraformer-large Model

Highlight

ModelScope: Paraformer-Large Model

  • Fast: Non-autoregressive (NAR) model, the Paraformer can achieve comparable performance to the state-of-the-art AR transformer, with more than 10x speedup.
  • Accurate: SOTA in a lot of public ASR tasks, with a very significant relative improvement, capable of industrial implementation.
  • Convenient: Quickly and easily download Paraformer-large from Modelscope for finetuning and inference.
    • Support finetuning and inference on AISHELL-1 and AISHELL-2.
    • Support inference on AISHELL-1, AISHELL-2, Wenetspeech, SpeechIO and other audio.

How to infer using a pretrained ModelScope Paraformer-large Model

Inference

  • Setting parameters in paraformer_large_infer.sh
    • ori_data: please set the wenetspeech raw data path
    • data_dir: data output dictionary
    • exp_dir: the result path
    • model_name: speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch # base model, download from modelscope
    • test_sets: please set the testsets name
  • Then you can run the pipeline to infer with:
    sh ./paraformer_large_infer.sh