mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
911 lines
31 KiB
Python
911 lines
31 KiB
Python
import argparse
|
|
import logging
|
|
import os
|
|
from pathlib import Path
|
|
from typing import Callable
|
|
from typing import Collection
|
|
from typing import Dict
|
|
from typing import List
|
|
from typing import Optional
|
|
from typing import Tuple
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import yaml
|
|
from typeguard import check_argument_types
|
|
from typeguard import check_return_type
|
|
|
|
from funasr.datasets.collate_fn import CommonCollateFn
|
|
from funasr.datasets.preprocessor import CommonPreprocessor
|
|
from funasr.layers.abs_normalize import AbsNormalize
|
|
from funasr.layers.global_mvn import GlobalMVN
|
|
from funasr.layers.label_aggregation import LabelAggregate
|
|
from funasr.layers.utterance_mvn import UtteranceMVN
|
|
from funasr.models.e2e_diar_sond import DiarSondModel
|
|
from funasr.models.e2e_diar_eend_ola import DiarEENDOLAModel
|
|
from funasr.models.encoder.abs_encoder import AbsEncoder
|
|
from funasr.models.encoder.conformer_encoder import ConformerEncoder
|
|
from funasr.models.encoder.data2vec_encoder import Data2VecEncoder
|
|
from funasr.models.encoder.ecapa_tdnn_encoder import ECAPA_TDNN
|
|
from funasr.models.encoder.opennmt_encoders.ci_scorers import DotScorer, CosScorer
|
|
from funasr.models.encoder.opennmt_encoders.conv_encoder import ConvEncoder
|
|
from funasr.models.encoder.opennmt_encoders.fsmn_encoder import FsmnEncoder
|
|
from funasr.models.encoder.opennmt_encoders.self_attention_encoder import SelfAttentionEncoder
|
|
from funasr.models.encoder.resnet34_encoder import ResNet34Diar, ResNet34SpL2RegDiar
|
|
from funasr.models.encoder.rnn_encoder import RNNEncoder
|
|
from funasr.models.encoder.sanm_encoder import SANMEncoder, SANMEncoderChunkOpt
|
|
from funasr.models.encoder.transformer_encoder import TransformerEncoder
|
|
from funasr.models.frontend.abs_frontend import AbsFrontend
|
|
from funasr.models.frontend.default import DefaultFrontend
|
|
from funasr.models.frontend.fused import FusedFrontends
|
|
from funasr.models.frontend.s3prl import S3prlFrontend
|
|
from funasr.models.frontend.wav_frontend import WavFrontend
|
|
from funasr.models.frontend.wav_frontend import WavFrontendMel23
|
|
from funasr.models.frontend.windowing import SlidingWindow
|
|
from funasr.models.specaug.abs_specaug import AbsSpecAug
|
|
from funasr.models.specaug.specaug import SpecAug
|
|
from funasr.models.specaug.specaug import SpecAugLFR
|
|
from funasr.modules.eend_ola.encoder import EENDOLATransformerEncoder
|
|
from funasr.modules.eend_ola.encoder_decoder_attractor import EncoderDecoderAttractor
|
|
from funasr.tasks.abs_task import AbsTask
|
|
from funasr.torch_utils.initialize import initialize
|
|
from funasr.models.base_model import FunASRModel
|
|
from funasr.train.class_choices import ClassChoices
|
|
from funasr.train.trainer import Trainer
|
|
from funasr.utils.types import float_or_none
|
|
from funasr.utils.types import int_or_none
|
|
from funasr.utils.types import str2bool
|
|
from funasr.utils.types import str_or_none
|
|
|
|
frontend_choices = ClassChoices(
|
|
name="frontend",
|
|
classes=dict(
|
|
default=DefaultFrontend,
|
|
sliding_window=SlidingWindow,
|
|
s3prl=S3prlFrontend,
|
|
fused=FusedFrontends,
|
|
wav_frontend=WavFrontend,
|
|
wav_frontend_mel23=WavFrontendMel23,
|
|
),
|
|
type_check=AbsFrontend,
|
|
default="default",
|
|
)
|
|
specaug_choices = ClassChoices(
|
|
name="specaug",
|
|
classes=dict(
|
|
specaug=SpecAug,
|
|
specaug_lfr=SpecAugLFR,
|
|
),
|
|
type_check=AbsSpecAug,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
normalize_choices = ClassChoices(
|
|
"normalize",
|
|
classes=dict(
|
|
global_mvn=GlobalMVN,
|
|
utterance_mvn=UtteranceMVN,
|
|
),
|
|
type_check=AbsNormalize,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
label_aggregator_choices = ClassChoices(
|
|
"label_aggregator",
|
|
classes=dict(
|
|
label_aggregator=LabelAggregate
|
|
),
|
|
type_check=torch.nn.Module,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
model_choices = ClassChoices(
|
|
"model",
|
|
classes=dict(
|
|
sond=DiarSondModel,
|
|
eend_ola=DiarEENDOLAModel,
|
|
),
|
|
type_check=FunASRModel,
|
|
default="sond",
|
|
)
|
|
encoder_choices = ClassChoices(
|
|
"encoder",
|
|
classes=dict(
|
|
conformer=ConformerEncoder,
|
|
transformer=TransformerEncoder,
|
|
rnn=RNNEncoder,
|
|
sanm=SANMEncoder,
|
|
san=SelfAttentionEncoder,
|
|
fsmn=FsmnEncoder,
|
|
conv=ConvEncoder,
|
|
resnet34=ResNet34Diar,
|
|
resnet34_sp_l2reg=ResNet34SpL2RegDiar,
|
|
sanm_chunk_opt=SANMEncoderChunkOpt,
|
|
data2vec_encoder=Data2VecEncoder,
|
|
ecapa_tdnn=ECAPA_TDNN,
|
|
eend_ola_transformer=EENDOLATransformerEncoder,
|
|
),
|
|
type_check=torch.nn.Module,
|
|
default="resnet34",
|
|
)
|
|
speaker_encoder_choices = ClassChoices(
|
|
"speaker_encoder",
|
|
classes=dict(
|
|
conformer=ConformerEncoder,
|
|
transformer=TransformerEncoder,
|
|
rnn=RNNEncoder,
|
|
sanm=SANMEncoder,
|
|
san=SelfAttentionEncoder,
|
|
fsmn=FsmnEncoder,
|
|
conv=ConvEncoder,
|
|
sanm_chunk_opt=SANMEncoderChunkOpt,
|
|
data2vec_encoder=Data2VecEncoder,
|
|
),
|
|
type_check=AbsEncoder,
|
|
default=None,
|
|
optional=True
|
|
)
|
|
cd_scorer_choices = ClassChoices(
|
|
"cd_scorer",
|
|
classes=dict(
|
|
san=SelfAttentionEncoder,
|
|
),
|
|
type_check=AbsEncoder,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
ci_scorer_choices = ClassChoices(
|
|
"ci_scorer",
|
|
classes=dict(
|
|
dot=DotScorer,
|
|
cosine=CosScorer,
|
|
conv=ConvEncoder,
|
|
),
|
|
type_check=torch.nn.Module,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
# decoder is used for output (e.g. post_net in SOND)
|
|
decoder_choices = ClassChoices(
|
|
"decoder",
|
|
classes=dict(
|
|
rnn=RNNEncoder,
|
|
fsmn=FsmnEncoder,
|
|
),
|
|
type_check=torch.nn.Module,
|
|
default="fsmn",
|
|
)
|
|
# encoder_decoder_attractor is used for EEND-OLA
|
|
encoder_decoder_attractor_choices = ClassChoices(
|
|
"encoder_decoder_attractor",
|
|
classes=dict(
|
|
eda=EncoderDecoderAttractor,
|
|
),
|
|
type_check=torch.nn.Module,
|
|
default="eda",
|
|
)
|
|
|
|
|
|
class DiarTask(AbsTask):
|
|
# If you need more than 1 optimizer, change this value
|
|
num_optimizers: int = 1
|
|
|
|
# Add variable objects configurations
|
|
class_choices_list = [
|
|
# --frontend and --frontend_conf
|
|
frontend_choices,
|
|
# --specaug and --specaug_conf
|
|
specaug_choices,
|
|
# --normalize and --normalize_conf
|
|
normalize_choices,
|
|
# --label_aggregator and --label_aggregator_conf
|
|
label_aggregator_choices,
|
|
# --model and --model_conf
|
|
model_choices,
|
|
# --encoder and --encoder_conf
|
|
encoder_choices,
|
|
# --speaker_encoder and --speaker_encoder_conf
|
|
speaker_encoder_choices,
|
|
# --cd_scorer and cd_scorer_conf
|
|
cd_scorer_choices,
|
|
# --ci_scorer and ci_scorer_conf
|
|
ci_scorer_choices,
|
|
# --decoder and --decoder_conf
|
|
decoder_choices,
|
|
]
|
|
|
|
# If you need to modify train() or eval() procedures, change Trainer class here
|
|
trainer = Trainer
|
|
|
|
@classmethod
|
|
def add_task_arguments(cls, parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group(description="Task related")
|
|
|
|
# NOTE(kamo): add_arguments(..., required=True) can't be used
|
|
# to provide --print_config mode. Instead of it, do as
|
|
# required = parser.get_default("required")
|
|
# required += ["token_list"]
|
|
|
|
group.add_argument(
|
|
"--token_list",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="A text mapping int-id to token",
|
|
)
|
|
group.add_argument(
|
|
"--split_with_space",
|
|
type=str2bool,
|
|
default=True,
|
|
help="whether to split text using <space>",
|
|
)
|
|
group.add_argument(
|
|
"--seg_dict_file",
|
|
type=str,
|
|
default=None,
|
|
help="seg_dict_file for text processing",
|
|
)
|
|
group.add_argument(
|
|
"--init",
|
|
type=lambda x: str_or_none(x.lower()),
|
|
default=None,
|
|
help="The initialization method",
|
|
choices=[
|
|
"chainer",
|
|
"xavier_uniform",
|
|
"xavier_normal",
|
|
"kaiming_uniform",
|
|
"kaiming_normal",
|
|
None,
|
|
],
|
|
)
|
|
|
|
group.add_argument(
|
|
"--input_size",
|
|
type=int_or_none,
|
|
default=None,
|
|
help="The number of input dimension of the feature",
|
|
)
|
|
|
|
group = parser.add_argument_group(description="Preprocess related")
|
|
group.add_argument(
|
|
"--use_preprocessor",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Apply preprocessing to data or not",
|
|
)
|
|
group.add_argument(
|
|
"--token_type",
|
|
type=str,
|
|
default="char",
|
|
choices=["char"],
|
|
help="The text will be tokenized in the specified level token",
|
|
)
|
|
parser.add_argument(
|
|
"--speech_volume_normalize",
|
|
type=float_or_none,
|
|
default=None,
|
|
help="Scale the maximum amplitude to the given value.",
|
|
)
|
|
parser.add_argument(
|
|
"--rir_scp",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="The file path of rir scp file.",
|
|
)
|
|
parser.add_argument(
|
|
"--rir_apply_prob",
|
|
type=float,
|
|
default=1.0,
|
|
help="THe probability for applying RIR convolution.",
|
|
)
|
|
parser.add_argument(
|
|
"--cmvn_file",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="The file path of noise scp file.",
|
|
)
|
|
parser.add_argument(
|
|
"--noise_scp",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="The file path of noise scp file.",
|
|
)
|
|
parser.add_argument(
|
|
"--noise_apply_prob",
|
|
type=float,
|
|
default=1.0,
|
|
help="The probability applying Noise adding.",
|
|
)
|
|
parser.add_argument(
|
|
"--noise_db_range",
|
|
type=str,
|
|
default="13_15",
|
|
help="The range of noise decibel level.",
|
|
)
|
|
|
|
for class_choices in cls.class_choices_list:
|
|
# Append --<name> and --<name>_conf.
|
|
# e.g. --encoder and --encoder_conf
|
|
class_choices.add_arguments(group)
|
|
|
|
@classmethod
|
|
def build_collate_fn(
|
|
cls, args: argparse.Namespace, train: bool
|
|
) -> Callable[
|
|
[Collection[Tuple[str, Dict[str, np.ndarray]]]],
|
|
Tuple[List[str], Dict[str, torch.Tensor]],
|
|
]:
|
|
assert check_argument_types()
|
|
# NOTE(kamo): int value = 0 is reserved by CTC-blank symbol
|
|
return CommonCollateFn(float_pad_value=0.0, int_pad_value=-1)
|
|
|
|
@classmethod
|
|
def build_preprocess_fn(
|
|
cls, args: argparse.Namespace, train: bool
|
|
) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]:
|
|
assert check_argument_types()
|
|
if args.use_preprocessor:
|
|
retval = CommonPreprocessor(
|
|
train=train,
|
|
token_type=args.token_type,
|
|
token_list=args.token_list,
|
|
bpemodel=None,
|
|
non_linguistic_symbols=None,
|
|
text_cleaner=None,
|
|
g2p_type=None,
|
|
split_with_space=args.split_with_space if hasattr(args, "split_with_space") else False,
|
|
seg_dict_file=args.seg_dict_file if hasattr(args, "seg_dict_file") else None,
|
|
# NOTE(kamo): Check attribute existence for backward compatibility
|
|
rir_scp=args.rir_scp if hasattr(args, "rir_scp") else None,
|
|
rir_apply_prob=args.rir_apply_prob
|
|
if hasattr(args, "rir_apply_prob")
|
|
else 1.0,
|
|
noise_scp=args.noise_scp if hasattr(args, "noise_scp") else None,
|
|
noise_apply_prob=args.noise_apply_prob
|
|
if hasattr(args, "noise_apply_prob")
|
|
else 1.0,
|
|
noise_db_range=args.noise_db_range
|
|
if hasattr(args, "noise_db_range")
|
|
else "13_15",
|
|
speech_volume_normalize=args.speech_volume_normalize
|
|
if hasattr(args, "rir_scp")
|
|
else None,
|
|
)
|
|
else:
|
|
retval = None
|
|
assert check_return_type(retval)
|
|
return retval
|
|
|
|
@classmethod
|
|
def required_data_names(
|
|
cls, train: bool = True, inference: bool = False
|
|
) -> Tuple[str, ...]:
|
|
if not inference:
|
|
retval = ("speech", "profile", "binary_labels")
|
|
else:
|
|
# Recognition mode
|
|
retval = ("speech", "profile")
|
|
return retval
|
|
|
|
@classmethod
|
|
def optional_data_names(
|
|
cls, train: bool = True, inference: bool = False
|
|
) -> Tuple[str, ...]:
|
|
retval = ()
|
|
assert check_return_type(retval)
|
|
return retval
|
|
|
|
@classmethod
|
|
def build_model(cls, args: argparse.Namespace):
|
|
assert check_argument_types()
|
|
if isinstance(args.token_list, str):
|
|
with open(args.token_list, encoding="utf-8") as f:
|
|
token_list = [line.rstrip() for line in f]
|
|
|
|
# Overwriting token_list to keep it as "portable".
|
|
args.token_list = list(token_list)
|
|
elif isinstance(args.token_list, (tuple, list)):
|
|
token_list = list(args.token_list)
|
|
else:
|
|
raise RuntimeError("token_list must be str or list")
|
|
vocab_size = len(token_list)
|
|
logging.info(f"Vocabulary size: {vocab_size}")
|
|
|
|
# 1. frontend
|
|
if args.input_size is None:
|
|
# Extract features in the model
|
|
frontend_class = frontend_choices.get_class(args.frontend)
|
|
if args.frontend == 'wav_frontend':
|
|
frontend = frontend_class(cmvn_file=args.cmvn_file, **args.frontend_conf)
|
|
else:
|
|
frontend = frontend_class(**args.frontend_conf)
|
|
input_size = frontend.output_size()
|
|
else:
|
|
# Give features from data-loader
|
|
args.frontend = None
|
|
args.frontend_conf = {}
|
|
frontend = None
|
|
input_size = args.input_size
|
|
|
|
# 2. Data augmentation for spectrogram
|
|
if args.specaug is not None:
|
|
specaug_class = specaug_choices.get_class(args.specaug)
|
|
specaug = specaug_class(**args.specaug_conf)
|
|
else:
|
|
specaug = None
|
|
|
|
# 3. Normalization layer
|
|
if args.normalize is not None:
|
|
normalize_class = normalize_choices.get_class(args.normalize)
|
|
normalize = normalize_class(**args.normalize_conf)
|
|
else:
|
|
normalize = None
|
|
|
|
# 4. Encoder
|
|
encoder_class = encoder_choices.get_class(args.encoder)
|
|
encoder = encoder_class(input_size=input_size, **args.encoder_conf)
|
|
|
|
# 5. speaker encoder
|
|
if getattr(args, "speaker_encoder", None) is not None:
|
|
speaker_encoder_class = speaker_encoder_choices.get_class(args.speaker_encoder)
|
|
speaker_encoder = speaker_encoder_class(**args.speaker_encoder_conf)
|
|
else:
|
|
speaker_encoder = None
|
|
|
|
# 6. CI & CD scorer
|
|
if getattr(args, "ci_scorer", None) is not None:
|
|
ci_scorer_class = ci_scorer_choices.get_class(args.ci_scorer)
|
|
ci_scorer = ci_scorer_class(**args.ci_scorer_conf)
|
|
else:
|
|
ci_scorer = None
|
|
|
|
if getattr(args, "cd_scorer", None) is not None:
|
|
cd_scorer_class = cd_scorer_choices.get_class(args.cd_scorer)
|
|
cd_scorer = cd_scorer_class(**args.cd_scorer_conf)
|
|
else:
|
|
cd_scorer = None
|
|
|
|
# 7. Decoder
|
|
decoder_class = decoder_choices.get_class(args.decoder)
|
|
decoder = decoder_class(**args.decoder_conf)
|
|
|
|
if getattr(args, "label_aggregator", None) is not None:
|
|
label_aggregator_class = label_aggregator_choices.get_class(args.label_aggregator)
|
|
label_aggregator = label_aggregator_class(**args.label_aggregator_conf)
|
|
else:
|
|
label_aggregator = None
|
|
|
|
# 9. Build model
|
|
model_class = model_choices.get_class(args.model)
|
|
model = model_class(
|
|
vocab_size=vocab_size,
|
|
frontend=frontend,
|
|
specaug=specaug,
|
|
normalize=normalize,
|
|
label_aggregator=label_aggregator,
|
|
encoder=encoder,
|
|
speaker_encoder=speaker_encoder,
|
|
ci_scorer=ci_scorer,
|
|
cd_scorer=cd_scorer,
|
|
decoder=decoder,
|
|
token_list=token_list,
|
|
**args.model_conf,
|
|
)
|
|
|
|
# 10. Initialize
|
|
if args.init is not None:
|
|
initialize(model, args.init)
|
|
|
|
assert check_return_type(model)
|
|
return model
|
|
|
|
# ~~~~~~~~~ The methods below are mainly used for inference ~~~~~~~~~
|
|
@classmethod
|
|
def build_model_from_file(
|
|
cls,
|
|
config_file: Union[Path, str] = None,
|
|
model_file: Union[Path, str] = None,
|
|
cmvn_file: Union[Path, str] = None,
|
|
device: Union[str, torch.device] = "cpu",
|
|
):
|
|
"""Build model from the files.
|
|
|
|
This method is used for inference or fine-tuning.
|
|
|
|
Args:
|
|
config_file: The yaml file saved when training.
|
|
model_file: The model file saved when training.
|
|
cmvn_file: The cmvn file for front-end
|
|
device: Device type, "cpu", "cuda", or "cuda:N".
|
|
|
|
"""
|
|
assert check_argument_types()
|
|
if config_file is None:
|
|
assert model_file is not None, (
|
|
"The argument 'model_file' must be provided "
|
|
"if the argument 'config_file' is not specified."
|
|
)
|
|
config_file = Path(model_file).parent / "config.yaml"
|
|
else:
|
|
config_file = Path(config_file)
|
|
|
|
with config_file.open("r", encoding="utf-8") as f:
|
|
args = yaml.safe_load(f)
|
|
if cmvn_file is not None:
|
|
args["cmvn_file"] = cmvn_file
|
|
args = argparse.Namespace(**args)
|
|
model = cls.build_model(args)
|
|
if not isinstance(model, FunASRModel):
|
|
raise RuntimeError(
|
|
f"model must inherit {FunASRModel.__name__}, but got {type(model)}"
|
|
)
|
|
model.to(device)
|
|
model_dict = dict()
|
|
model_name_pth = None
|
|
if model_file is not None:
|
|
logging.info("model_file is {}".format(model_file))
|
|
if device == "cuda":
|
|
device = f"cuda:{torch.cuda.current_device()}"
|
|
model_dir = os.path.dirname(model_file)
|
|
model_name = os.path.basename(model_file)
|
|
if "model.ckpt-" in model_name or ".bin" in model_name:
|
|
if ".bin" in model_name:
|
|
model_name_pth = os.path.join(model_dir, model_name.replace('.bin', '.pb'))
|
|
else:
|
|
model_name_pth = os.path.join(model_dir, "{}.pb".format(model_name))
|
|
if os.path.exists(model_name_pth):
|
|
logging.info("model_file is load from pth: {}".format(model_name_pth))
|
|
model_dict = torch.load(model_name_pth, map_location=device)
|
|
else:
|
|
model_dict = cls.convert_tf2torch(model, model_file)
|
|
model.load_state_dict(model_dict)
|
|
else:
|
|
model_dict = torch.load(model_file, map_location=device)
|
|
model_dict = cls.fileter_model_dict(model_dict, model.state_dict())
|
|
model.load_state_dict(model_dict)
|
|
if model_name_pth is not None and not os.path.exists(model_name_pth):
|
|
torch.save(model_dict, model_name_pth)
|
|
logging.info("model_file is saved to pth: {}".format(model_name_pth))
|
|
|
|
return model, args
|
|
|
|
@classmethod
|
|
def fileter_model_dict(cls, src_dict: dict, dest_dict: dict):
|
|
from collections import OrderedDict
|
|
new_dict = OrderedDict()
|
|
for key, value in src_dict.items():
|
|
if key in dest_dict:
|
|
new_dict[key] = value
|
|
else:
|
|
logging.info("{} is no longer needed in this model.".format(key))
|
|
for key, value in dest_dict.items():
|
|
if key not in new_dict:
|
|
logging.warning("{} is missed in checkpoint.".format(key))
|
|
return new_dict
|
|
|
|
@classmethod
|
|
def convert_tf2torch(
|
|
cls,
|
|
model,
|
|
ckpt,
|
|
):
|
|
logging.info("start convert tf model to torch model")
|
|
from funasr.modules.streaming_utils.load_fr_tf import load_tf_dict
|
|
var_dict_tf = load_tf_dict(ckpt)
|
|
var_dict_torch = model.state_dict()
|
|
var_dict_torch_update = dict()
|
|
# speech encoder
|
|
if model.encoder is not None:
|
|
var_dict_torch_update_local = model.encoder.convert_tf2torch(var_dict_tf, var_dict_torch)
|
|
var_dict_torch_update.update(var_dict_torch_update_local)
|
|
# speaker encoder
|
|
if model.speaker_encoder is not None:
|
|
var_dict_torch_update_local = model.speaker_encoder.convert_tf2torch(var_dict_tf, var_dict_torch)
|
|
var_dict_torch_update.update(var_dict_torch_update_local)
|
|
# cd scorer
|
|
if model.cd_scorer is not None:
|
|
var_dict_torch_update_local = model.cd_scorer.convert_tf2torch(var_dict_tf, var_dict_torch)
|
|
var_dict_torch_update.update(var_dict_torch_update_local)
|
|
# ci scorer
|
|
if model.ci_scorer is not None:
|
|
var_dict_torch_update_local = model.ci_scorer.convert_tf2torch(var_dict_tf, var_dict_torch)
|
|
var_dict_torch_update.update(var_dict_torch_update_local)
|
|
# decoder
|
|
if model.decoder is not None:
|
|
var_dict_torch_update_local = model.decoder.convert_tf2torch(var_dict_tf, var_dict_torch)
|
|
var_dict_torch_update.update(var_dict_torch_update_local)
|
|
|
|
return var_dict_torch_update
|
|
|
|
|
|
class EENDOLADiarTask(AbsTask):
|
|
# If you need more than 1 optimizer, change this value
|
|
num_optimizers: int = 1
|
|
|
|
# Add variable objects configurations
|
|
class_choices_list = [
|
|
# --frontend and --frontend_conf
|
|
frontend_choices,
|
|
# --specaug and --specaug_conf
|
|
model_choices,
|
|
# --encoder and --encoder_conf
|
|
encoder_choices,
|
|
# --speaker_encoder and --speaker_encoder_conf
|
|
encoder_decoder_attractor_choices,
|
|
]
|
|
|
|
# If you need to modify train() or eval() procedures, change Trainer class here
|
|
trainer = Trainer
|
|
|
|
@classmethod
|
|
def add_task_arguments(cls, parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group(description="Task related")
|
|
|
|
# NOTE(kamo): add_arguments(..., required=True) can't be used
|
|
# to provide --print_config mode. Instead of it, do as
|
|
# required = parser.get_default("required")
|
|
# required += ["token_list"]
|
|
|
|
group.add_argument(
|
|
"--token_list",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="A text mapping int-id to token",
|
|
)
|
|
group.add_argument(
|
|
"--split_with_space",
|
|
type=str2bool,
|
|
default=True,
|
|
help="whether to split text using <space>",
|
|
)
|
|
group.add_argument(
|
|
"--seg_dict_file",
|
|
type=str,
|
|
default=None,
|
|
help="seg_dict_file for text processing",
|
|
)
|
|
group.add_argument(
|
|
"--init",
|
|
type=lambda x: str_or_none(x.lower()),
|
|
default=None,
|
|
help="The initialization method",
|
|
choices=[
|
|
"chainer",
|
|
"xavier_uniform",
|
|
"xavier_normal",
|
|
"kaiming_uniform",
|
|
"kaiming_normal",
|
|
None,
|
|
],
|
|
)
|
|
|
|
group.add_argument(
|
|
"--input_size",
|
|
type=int_or_none,
|
|
default=None,
|
|
help="The number of input dimension of the feature",
|
|
)
|
|
|
|
group = parser.add_argument_group(description="Preprocess related")
|
|
group.add_argument(
|
|
"--use_preprocessor",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Apply preprocessing to data or not",
|
|
)
|
|
group.add_argument(
|
|
"--token_type",
|
|
type=str,
|
|
default="char",
|
|
choices=["char"],
|
|
help="The text will be tokenized in the specified level token",
|
|
)
|
|
parser.add_argument(
|
|
"--speech_volume_normalize",
|
|
type=float_or_none,
|
|
default=None,
|
|
help="Scale the maximum amplitude to the given value.",
|
|
)
|
|
parser.add_argument(
|
|
"--rir_scp",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="The file path of rir scp file.",
|
|
)
|
|
parser.add_argument(
|
|
"--rir_apply_prob",
|
|
type=float,
|
|
default=1.0,
|
|
help="THe probability for applying RIR convolution.",
|
|
)
|
|
parser.add_argument(
|
|
"--cmvn_file",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="The file path of noise scp file.",
|
|
)
|
|
parser.add_argument(
|
|
"--noise_scp",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="The file path of noise scp file.",
|
|
)
|
|
parser.add_argument(
|
|
"--noise_apply_prob",
|
|
type=float,
|
|
default=1.0,
|
|
help="The probability applying Noise adding.",
|
|
)
|
|
parser.add_argument(
|
|
"--noise_db_range",
|
|
type=str,
|
|
default="13_15",
|
|
help="The range of noise decibel level.",
|
|
)
|
|
|
|
for class_choices in cls.class_choices_list:
|
|
# Append --<name> and --<name>_conf.
|
|
# e.g. --encoder and --encoder_conf
|
|
class_choices.add_arguments(group)
|
|
|
|
@classmethod
|
|
def build_collate_fn(
|
|
cls, args: argparse.Namespace, train: bool
|
|
) -> Callable[
|
|
[Collection[Tuple[str, Dict[str, np.ndarray]]]],
|
|
Tuple[List[str], Dict[str, torch.Tensor]],
|
|
]:
|
|
assert check_argument_types()
|
|
# NOTE(kamo): int value = 0 is reserved by CTC-blank symbol
|
|
return CommonCollateFn(float_pad_value=0.0, int_pad_value=-1)
|
|
|
|
@classmethod
|
|
def build_preprocess_fn(
|
|
cls, args: argparse.Namespace, train: bool
|
|
) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]:
|
|
assert check_argument_types()
|
|
# if args.use_preprocessor:
|
|
# retval = CommonPreprocessor(
|
|
# train=train,
|
|
# token_type=args.token_type,
|
|
# token_list=args.token_list,
|
|
# bpemodel=None,
|
|
# non_linguistic_symbols=None,
|
|
# text_cleaner=None,
|
|
# g2p_type=None,
|
|
# split_with_space=args.split_with_space if hasattr(args, "split_with_space") else False,
|
|
# seg_dict_file=args.seg_dict_file if hasattr(args, "seg_dict_file") else None,
|
|
# # NOTE(kamo): Check attribute existence for backward compatibility
|
|
# rir_scp=args.rir_scp if hasattr(args, "rir_scp") else None,
|
|
# rir_apply_prob=args.rir_apply_prob
|
|
# if hasattr(args, "rir_apply_prob")
|
|
# else 1.0,
|
|
# noise_scp=args.noise_scp if hasattr(args, "noise_scp") else None,
|
|
# noise_apply_prob=args.noise_apply_prob
|
|
# if hasattr(args, "noise_apply_prob")
|
|
# else 1.0,
|
|
# noise_db_range=args.noise_db_range
|
|
# if hasattr(args, "noise_db_range")
|
|
# else "13_15",
|
|
# speech_volume_normalize=args.speech_volume_normalize
|
|
# if hasattr(args, "rir_scp")
|
|
# else None,
|
|
# )
|
|
# else:
|
|
# retval = None
|
|
# assert check_return_type(retval)
|
|
return None
|
|
|
|
@classmethod
|
|
def required_data_names(
|
|
cls, train: bool = True, inference: bool = False
|
|
) -> Tuple[str, ...]:
|
|
if not inference:
|
|
retval = ("speech", )
|
|
else:
|
|
# Recognition mode
|
|
retval = ("speech", )
|
|
return retval
|
|
|
|
@classmethod
|
|
def optional_data_names(
|
|
cls, train: bool = True, inference: bool = False
|
|
) -> Tuple[str, ...]:
|
|
retval = ()
|
|
assert check_return_type(retval)
|
|
return retval
|
|
|
|
@classmethod
|
|
def build_model(cls, args: argparse.Namespace):
|
|
assert check_argument_types()
|
|
|
|
# 1. frontend
|
|
if args.input_size is None or args.frontend == "wav_frontend_mel23":
|
|
# Extract features in the model
|
|
frontend_class = frontend_choices.get_class(args.frontend)
|
|
if args.frontend == 'wav_frontend':
|
|
frontend = frontend_class(cmvn_file=args.cmvn_file, **args.frontend_conf)
|
|
else:
|
|
frontend = frontend_class(**args.frontend_conf)
|
|
input_size = frontend.output_size()
|
|
else:
|
|
# Give features from data-loader
|
|
args.frontend = None
|
|
args.frontend_conf = {}
|
|
frontend = None
|
|
input_size = args.input_size
|
|
|
|
# 2. Encoder
|
|
encoder_class = encoder_choices.get_class(args.encoder)
|
|
encoder = encoder_class(**args.encoder_conf)
|
|
|
|
# 3. EncoderDecoderAttractor
|
|
encoder_decoder_attractor_class = encoder_decoder_attractor_choices.get_class(args.encoder_decoder_attractor)
|
|
encoder_decoder_attractor = encoder_decoder_attractor_class(**args.encoder_decoder_attractor_conf)
|
|
|
|
# 9. Build model
|
|
model_class = model_choices.get_class(args.model)
|
|
model = model_class(
|
|
frontend=frontend,
|
|
encoder=encoder,
|
|
encoder_decoder_attractor=encoder_decoder_attractor,
|
|
**args.model_conf,
|
|
)
|
|
|
|
# 10. Initialize
|
|
if args.init is not None:
|
|
initialize(model, args.init)
|
|
|
|
assert check_return_type(model)
|
|
return model
|
|
|
|
# ~~~~~~~~~ The methods below are mainly used for inference ~~~~~~~~~
|
|
@classmethod
|
|
def build_model_from_file(
|
|
cls,
|
|
config_file: Union[Path, str] = None,
|
|
model_file: Union[Path, str] = None,
|
|
cmvn_file: Union[Path, str] = None,
|
|
device: str = "cpu",
|
|
):
|
|
"""Build model from the files.
|
|
|
|
This method is used for inference or fine-tuning.
|
|
|
|
Args:
|
|
config_file: The yaml file saved when training.
|
|
model_file: The model file saved when training.
|
|
cmvn_file: The cmvn file for front-end
|
|
device: Device type, "cpu", "cuda", or "cuda:N".
|
|
|
|
"""
|
|
assert check_argument_types()
|
|
if config_file is None:
|
|
assert model_file is not None, (
|
|
"The argument 'model_file' must be provided "
|
|
"if the argument 'config_file' is not specified."
|
|
)
|
|
config_file = Path(model_file).parent / "config.yaml"
|
|
else:
|
|
config_file = Path(config_file)
|
|
|
|
with config_file.open("r", encoding="utf-8") as f:
|
|
args = yaml.safe_load(f)
|
|
args = argparse.Namespace(**args)
|
|
model = cls.build_model(args)
|
|
if not isinstance(model, FunASRModel):
|
|
raise RuntimeError(
|
|
f"model must inherit {FunASRModel.__name__}, but got {type(model)}"
|
|
)
|
|
if model_file is not None:
|
|
if device == "cuda":
|
|
device = f"cuda:{torch.cuda.current_device()}"
|
|
checkpoint = torch.load(model_file, map_location=device)
|
|
if "state_dict" in checkpoint.keys():
|
|
model.load_state_dict(checkpoint["state_dict"])
|
|
else:
|
|
model.load_state_dict(checkpoint)
|
|
model.to(device)
|
|
return model, args
|