mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
190 lines
7.2 KiB
Python
190 lines
7.2 KiB
Python
import logging
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.data import DataLoader
|
|
|
|
from funasr.datasets.small_datasets.collate_fn import CommonCollateFn
|
|
from funasr.datasets.small_datasets.dataset import ESPnetDataset
|
|
from funasr.datasets.small_datasets.length_batch_sampler import LengthBatchSampler
|
|
from funasr.datasets.small_datasets.preprocessor import build_preprocess
|
|
from funasr.iterators.abs_iter_factory import AbsIterFactory
|
|
from funasr.samplers.abs_sampler import AbsSampler
|
|
|
|
|
|
class RawSampler(AbsSampler):
|
|
def __init__(self, batches):
|
|
self.batches = batches
|
|
|
|
def __len__(self):
|
|
return len(self.batches)
|
|
|
|
def __iter__(self):
|
|
return iter(self.batches)
|
|
|
|
def generate(self, seed):
|
|
return list(self.batches)
|
|
|
|
|
|
class SequenceIterFactory(AbsIterFactory):
|
|
"""Build iterator for each epoch, modified from ESPnet
|
|
|
|
"""
|
|
|
|
def __init__(self, args, mode="train"):
|
|
|
|
# preprocess
|
|
preprocess_fn = build_preprocess(args, train=mode == "train")
|
|
|
|
# collate
|
|
if args.task_name in ["punc", "lm"]:
|
|
collate_fn = CommonCollateFn(int_pad_value=0)
|
|
else:
|
|
collate_fn = CommonCollateFn(float_pad_value=0.0, int_pad_value=-1)
|
|
|
|
# dataset
|
|
dest_sample_rate = args.frontend_conf["fs"] if (
|
|
args.frontend_conf is not None and "fs" in args.frontend_conf) else 16000
|
|
if mode == "train":
|
|
data_path_and_name_and_type = args.train_data_path_and_name_and_type
|
|
shape_files = args.train_shape_file
|
|
elif mode == "valid":
|
|
data_path_and_name_and_type = args.valid_data_path_and_name_and_type
|
|
shape_files = args.valid_shape_file
|
|
else:
|
|
raise NotImplementedError(f"mode={mode}")
|
|
dataset = ESPnetDataset(
|
|
data_path_and_name_and_type,
|
|
preprocess=preprocess_fn,
|
|
dest_sample_rate=dest_sample_rate,
|
|
speed_perturb=args.speed_perturb,
|
|
)
|
|
|
|
# sampler
|
|
dataset_conf = args.dataset_conf
|
|
batch_sampler = LengthBatchSampler(
|
|
batch_bins=dataset_conf["batch_conf"]["batch_size"] * args.ngpu,
|
|
shape_files=shape_files,
|
|
sort_in_batch=dataset_conf["sort_in_batch"] if hasattr(dataset_conf, "sort_in_batch") else "descending",
|
|
sort_batch=dataset_conf["sort_batch"] if hasattr(dataset_conf, "sort_batch") else "ascending",
|
|
drop_last=False,
|
|
padding=True,
|
|
)
|
|
|
|
batches = list(batch_sampler)
|
|
bs_list = [len(batch) for batch in batches]
|
|
logging.info(f"[{mode}] dataset:\n{dataset}")
|
|
logging.info(f"[{mode}] Batch sampler: {batch_sampler}")
|
|
logging.info(
|
|
f"[{mode}] mini-batch sizes summary: N-batch={len(bs_list)}, "
|
|
f"mean={np.mean(bs_list):.1f}, min={np.min(bs_list)}, max={np.max(bs_list)}"
|
|
)
|
|
|
|
if args.scheduler == "tri_stage" and mode == "train":
|
|
args.max_update = len(bs_list) * args.max_epoch
|
|
logging.info("Max update: {}".format(args.max_update))
|
|
|
|
if args.distributed and mode=="train":
|
|
world_size = torch.distributed.get_world_size()
|
|
rank = torch.distributed.get_rank()
|
|
for batch in batches:
|
|
if len(batch) < world_size:
|
|
raise RuntimeError(
|
|
f"The batch-size must be equal or more than world_size: "
|
|
f"{len(batch)} < {world_size}"
|
|
)
|
|
batches = [batch[rank::world_size] for batch in batches]
|
|
|
|
if not isinstance(batches, AbsSampler):
|
|
self.sampler = RawSampler(batches)
|
|
else:
|
|
self.sampler = batches
|
|
|
|
self.dataset = dataset
|
|
self.num_iters_per_epoch = None
|
|
self.shuffle = mode == "train"
|
|
self.seed = args.seed
|
|
self.num_workers = args.dataset_conf.get("num_workers", 8)
|
|
self.collate_fn = collate_fn
|
|
self.pin_memory = args.ngpu > 0
|
|
|
|
def build_iter(self, epoch: int, shuffle: bool = None) -> DataLoader:
|
|
if shuffle is None:
|
|
shuffle = self.shuffle
|
|
|
|
if self.num_iters_per_epoch is not None:
|
|
N = len(self.sampler)
|
|
# If corpus size is larger than the num_per_epoch
|
|
if self.num_iters_per_epoch < N:
|
|
N = len(self.sampler)
|
|
real_epoch, offset = divmod(self.num_iters_per_epoch * epoch, N)
|
|
|
|
if offset >= self.num_iters_per_epoch:
|
|
current_batches = self.sampler.generate(real_epoch + self.seed)
|
|
if shuffle:
|
|
np.random.RandomState(real_epoch + self.seed).shuffle(
|
|
current_batches
|
|
)
|
|
batches = current_batches[
|
|
offset - self.num_iters_per_epoch: offset
|
|
]
|
|
else:
|
|
prev_batches = self.sampler.generate(real_epoch - 1 + self.seed)
|
|
current_batches = self.sampler.generate(real_epoch + self.seed)
|
|
if shuffle:
|
|
np.random.RandomState(real_epoch - 1 + self.seed).shuffle(
|
|
prev_batches
|
|
)
|
|
np.random.RandomState(real_epoch + self.seed).shuffle(
|
|
current_batches
|
|
)
|
|
batches = (
|
|
prev_batches[offset - self.num_iters_per_epoch:]
|
|
+ current_batches[:offset]
|
|
)
|
|
|
|
# If corpus size is less than the num_per_epoch
|
|
else:
|
|
_epoch, _cursor = divmod(self.num_iters_per_epoch * (epoch - 1), N)
|
|
_remain = self.num_iters_per_epoch
|
|
batches = []
|
|
current_batches = self.sampler.generate(_epoch + self.seed)
|
|
if shuffle:
|
|
np.random.RandomState(_epoch + self.seed).shuffle(current_batches)
|
|
while _remain > 0:
|
|
|
|
_batches = current_batches[_cursor: _cursor + _remain]
|
|
batches += _batches
|
|
if _cursor + _remain >= N:
|
|
_epoch += 1
|
|
_cursor = 0
|
|
current_batches = self.sampler.generate(_epoch + self.seed)
|
|
if shuffle:
|
|
np.random.RandomState(_epoch + self.seed).shuffle(
|
|
current_batches
|
|
)
|
|
else:
|
|
_cursor = _cursor + _remain
|
|
_remain -= len(_batches)
|
|
|
|
assert len(batches) == self.num_iters_per_epoch
|
|
|
|
else:
|
|
batches = self.sampler.generate(epoch + self.seed)
|
|
if shuffle:
|
|
np.random.RandomState(epoch + self.seed).shuffle(batches)
|
|
|
|
# For backward compatibility for pytorch DataLoader
|
|
if self.collate_fn is not None:
|
|
kwargs = dict(collate_fn=self.collate_fn)
|
|
else:
|
|
kwargs = {}
|
|
|
|
return DataLoader(
|
|
dataset=self.dataset,
|
|
batch_sampler=batches,
|
|
num_workers=self.num_workers,
|
|
pin_memory=self.pin_memory,
|
|
**kwargs,
|
|
)
|