FunASR/funasr/datasets/small_datasets/dataset.py
2023-05-12 11:22:58 +08:00

258 lines
9.0 KiB
Python

# Copyright ESPnet (https://github.com/espnet/espnet). All Rights Reserved.
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
import collections
import copy
import logging
import numbers
from typing import Callable
from typing import Collection
from typing import Dict
from typing import Mapping
from typing import Tuple
from typing import Union
import kaldiio
import numpy as np
import torch
from torch.utils.data.dataset import Dataset
from typeguard import check_argument_types
from typeguard import check_return_type
from funasr.fileio.npy_scp import NpyScpReader
from funasr.fileio.sound_scp import SoundScpReader
class AdapterForSoundScpReader(collections.abc.Mapping):
def __init__(self, loader, dtype=None):
assert check_argument_types()
self.loader = loader
self.dtype = dtype
self.rate = None
def keys(self):
return self.loader.keys()
def __len__(self):
return len(self.loader)
def __iter__(self):
return iter(self.loader)
def __getitem__(self, key: str) -> np.ndarray:
retval = self.loader[key]
if isinstance(retval, tuple):
assert len(retval) == 2, len(retval)
if isinstance(retval[0], int) and isinstance(retval[1], np.ndarray):
# sound scp case
rate, array = retval
elif isinstance(retval[1], int) and isinstance(retval[0], np.ndarray):
# Extended ark format case
array, rate = retval
else:
raise RuntimeError(
f"Unexpected type: {type(retval[0])}, {type(retval[1])}"
)
if self.rate is not None and self.rate != rate:
raise RuntimeError(
f"Sampling rates are mismatched: {self.rate} != {rate}"
)
self.rate = rate
# Multichannel wave fie
# array: (NSample, Channel) or (Nsample)
if self.dtype is not None:
array = array.astype(self.dtype)
else:
# Normal ark case
assert isinstance(retval, np.ndarray), type(retval)
array = retval
if self.dtype is not None:
array = array.astype(self.dtype)
assert isinstance(array, np.ndarray), type(array)
return array
def sound_loader(path, dest_sample_rate=16000, float_dtype=None):
# The file is as follows:
# utterance_id_A /some/where/a.wav
# utterance_id_B /some/where/a.flac
# NOTE(kamo): SoundScpReader doesn't support pipe-fashion
# like Kaldi e.g. "cat a.wav |".
# NOTE(kamo): The audio signal is normalized to [-1,1] range.
loader = SoundScpReader(path, dest_sample_rate, normalize=True, always_2d=False)
# SoundScpReader.__getitem__() returns Tuple[int, ndarray],
# but ndarray is desired, so Adapter class is inserted here
return AdapterForSoundScpReader(loader, float_dtype)
def kaldi_loader(path, float_dtype=None, max_cache_fd: int = 0):
loader = kaldiio.load_scp(path, max_cache_fd=max_cache_fd)
return AdapterForSoundScpReader(loader, float_dtype)
class ESPnetDataset(Dataset):
"""
Pytorch Dataset class for FunASR, modified from ESPnet
"""
def __init__(
self,
path_name_type_list: Collection[Tuple[str, str, str]],
preprocess: Callable[
[str, Dict[str, np.ndarray]], Dict[str, np.ndarray]
] = None,
float_dtype: str = "float32",
int_dtype: str = "long",
dest_sample_rate: int = 16000,
speed_perturb: tuple = None,
mode: str = "train",
):
assert check_argument_types()
if len(path_name_type_list) == 0:
raise ValueError(
'1 or more elements are required for "path_name_type_list"'
)
path_name_type_list = copy.deepcopy(path_name_type_list)
self.preprocess = preprocess
self.float_dtype = float_dtype
self.int_dtype = int_dtype
self.dest_sample_rate = dest_sample_rate
self.speed_perturb = speed_perturb
self.mode = mode
if self.speed_perturb is not None:
logging.info("Using speed_perturb: {}".format(speed_perturb))
self.loader_dict = {}
self.debug_info = {}
for path, name, _type in path_name_type_list:
if name in self.loader_dict:
raise RuntimeError(f'"{name}" is duplicated for data-key')
loader = self._build_loader(path, _type)
self.loader_dict[name] = loader
self.debug_info[name] = path, _type
if len(self.loader_dict[name]) == 0:
raise RuntimeError(f"{path} has no samples")
def _build_loader(
self, path: str, loader_type: str
) -> Mapping[str, Union[np.ndarray, torch.Tensor, str, numbers.Number]]:
"""Helper function to instantiate Loader.
Args:
path: The file path
loader_type: loader_type. sound, npy, text, etc
"""
if loader_type == "sound":
speed_perturb = self.speed_perturb if self.mode == "train" else None
loader = SoundScpReader(path, self.dest_sample_rate, normalize=True, always_2d=False,
speed_perturb=speed_perturb)
return AdapterForSoundScpReader(loader, self.float_dtype)
elif loader_type == "kaldi_ark":
loader = kaldiio.load_scp(path)
return AdapterForSoundScpReader(loader, self.float_dtype)
elif loader_type == "npy":
return NpyScpReader(path)
elif loader_type == "text":
text_loader = {}
with open(path, "r", encoding="utf-8") as f:
for linenum, line in enumerate(f, 1):
sps = line.rstrip().split(maxsplit=1)
if len(sps) == 1:
k, v = sps[0], ""
else:
k, v = sps
if k in text_loader:
raise RuntimeError(f"{k} is duplicated ({path}:{linenum})")
text_loader[k] = v
return text_loader
else:
raise RuntimeError(f"Not supported: loader_type={loader_type}")
def has_name(self, name) -> bool:
return name in self.loader_dict
def names(self) -> Tuple[str, ...]:
return tuple(self.loader_dict)
def __iter__(self):
return iter(next(iter(self.loader_dict.values())))
def __repr__(self):
_mes = self.__class__.__name__
_mes += "("
for name, (path, _type) in self.debug_info.items():
_mes += f'\n {name}: {{"path": "{path}", "type": "{_type}"}}'
_mes += f"\n preprocess: {self.preprocess})"
return _mes
def __getitem__(self, uid: Union[str, int]) -> Tuple[str, Dict[str, np.ndarray]]:
assert check_argument_types()
# Change integer-id to string-id
if isinstance(uid, int):
d = next(iter(self.loader_dict.values()))
uid = list(d)[uid]
data = {}
# 1. Load data from each loaders
for name, loader in self.loader_dict.items():
try:
value = loader[uid]
if isinstance(value, (list, tuple)):
value = np.array(value)
if not isinstance(
value, (np.ndarray, torch.Tensor, str, numbers.Number)
):
raise TypeError(
f"Must be ndarray, torch.Tensor, str or Number: {type(value)}"
)
except Exception:
path, _type = self.debug_info[name]
logging.error(
f"Error happened with path={path}, type={_type}, id={uid}"
)
raise
# torch.Tensor is converted to ndarray
if isinstance(value, torch.Tensor):
value = value.numpy()
elif isinstance(value, numbers.Number):
value = np.array([value])
data[name] = value
# 2. [Option] Apply preprocessing
# e.g. funasr.train.preprocessor:CommonPreprocessor
if self.preprocess is not None:
data = self.preprocess(uid, data)
# 3. Force data-precision
for name in data:
value = data[name]
if not isinstance(value, np.ndarray):
raise RuntimeError(
f"All values must be converted to np.ndarray object "
f'by preprocessing, but "{name}" is still {type(value)}.'
)
# Cast to desired type
if value.dtype.kind == "f":
value = value.astype(self.float_dtype)
elif value.dtype.kind == "i":
value = value.astype(self.int_dtype)
else:
raise NotImplementedError(f"Not supported dtype: {value.dtype}")
data[name] = value
retval = uid, data
assert check_return_type(retval)
return retval