mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
567 lines
17 KiB
Python
Executable File
567 lines
17 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
import sys
|
|
from io import BytesIO
|
|
|
|
import torch
|
|
|
|
from funasr.build_utils.build_args import build_args
|
|
from funasr.build_utils.build_dataloader import build_dataloader
|
|
from funasr.build_utils.build_distributed import build_distributed
|
|
from funasr.build_utils.build_model import build_model
|
|
from funasr.build_utils.build_optimizer import build_optimizer
|
|
from funasr.build_utils.build_scheduler import build_scheduler
|
|
from funasr.build_utils.build_trainer import build_trainer
|
|
from funasr.text.phoneme_tokenizer import g2p_choices
|
|
from funasr.torch_utils.load_pretrained_model import load_pretrained_model
|
|
from funasr.torch_utils.model_summary import model_summary
|
|
from funasr.torch_utils.pytorch_version import pytorch_cudnn_version
|
|
from funasr.torch_utils.set_all_random_seed import set_all_random_seed
|
|
from funasr.utils.nested_dict_action import NestedDictAction
|
|
from funasr.utils.prepare_data import prepare_data
|
|
from funasr.utils.types import int_or_none
|
|
from funasr.utils.types import str2bool
|
|
from funasr.utils.types import str_or_none
|
|
from funasr.utils.yaml_no_alias_safe_dump import yaml_no_alias_safe_dump
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
description="FunASR Common Training Parser",
|
|
)
|
|
|
|
# common configuration
|
|
parser.add_argument("--output_dir", help="model save path")
|
|
parser.add_argument(
|
|
"--ngpu",
|
|
type=int,
|
|
default=0,
|
|
help="The number of gpus. 0 indicates CPU mode",
|
|
)
|
|
parser.add_argument("--seed", type=int, default=0, help="Random seed")
|
|
parser.add_argument("--task_name", type=str, default="asr", help="Name for different tasks")
|
|
|
|
# ddp related
|
|
parser.add_argument(
|
|
"--dist_backend",
|
|
default="nccl",
|
|
type=str,
|
|
help="distributed backend",
|
|
)
|
|
parser.add_argument(
|
|
"--dist_init_method",
|
|
type=str,
|
|
default="env://",
|
|
help='if init_method="env://", env values of "MASTER_PORT", "MASTER_ADDR", '
|
|
'"WORLD_SIZE", and "RANK" are referred.',
|
|
)
|
|
parser.add_argument(
|
|
"--dist_world_size",
|
|
type=int,
|
|
default=1,
|
|
help="number of nodes for distributed training",
|
|
)
|
|
parser.add_argument(
|
|
"--dist_rank",
|
|
type=int,
|
|
default=None,
|
|
help="node rank for distributed training",
|
|
)
|
|
parser.add_argument(
|
|
"--local_rank",
|
|
type=int,
|
|
default=None,
|
|
help="local rank for distributed training",
|
|
)
|
|
parser.add_argument(
|
|
"--dist_master_addr",
|
|
default=None,
|
|
type=str_or_none,
|
|
help="The master address for distributed training. "
|
|
"This value is used when dist_init_method == 'env://'",
|
|
)
|
|
parser.add_argument(
|
|
"--dist_master_port",
|
|
default=None,
|
|
type=int_or_none,
|
|
help="The master port for distributed training"
|
|
"This value is used when dist_init_method == 'env://'",
|
|
)
|
|
parser.add_argument(
|
|
"--dist_launcher",
|
|
default=None,
|
|
type=str_or_none,
|
|
choices=["slurm", "mpi", None],
|
|
help="The launcher type for distributed training",
|
|
)
|
|
parser.add_argument(
|
|
"--multiprocessing_distributed",
|
|
default=True,
|
|
type=str2bool,
|
|
help="Use multi-processing distributed training to launch "
|
|
"N processes per node, which has N GPUs. This is the "
|
|
"fastest way to use PyTorch for either single node or "
|
|
"multi node data parallel training",
|
|
)
|
|
parser.add_argument(
|
|
"--unused_parameters",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Whether to use the find_unused_parameters in "
|
|
"torch.nn.parallel.DistributedDataParallel ",
|
|
)
|
|
parser.add_argument(
|
|
"--gpu_id",
|
|
type=int,
|
|
default=0,
|
|
help="local gpu id.",
|
|
)
|
|
|
|
# cudnn related
|
|
parser.add_argument(
|
|
"--cudnn_enabled",
|
|
type=str2bool,
|
|
default=torch.backends.cudnn.enabled,
|
|
help="Enable CUDNN",
|
|
)
|
|
parser.add_argument(
|
|
"--cudnn_benchmark",
|
|
type=str2bool,
|
|
default=torch.backends.cudnn.benchmark,
|
|
help="Enable cudnn-benchmark mode",
|
|
)
|
|
parser.add_argument(
|
|
"--cudnn_deterministic",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Enable cudnn-deterministic mode",
|
|
)
|
|
|
|
# trainer related
|
|
parser.add_argument(
|
|
"--max_epoch",
|
|
type=int,
|
|
default=40,
|
|
help="The maximum number epoch to train",
|
|
)
|
|
parser.add_argument(
|
|
"--max_update",
|
|
type=int,
|
|
default=sys.maxsize,
|
|
help="The maximum number update step to train",
|
|
)
|
|
parser.add_argument(
|
|
"--batch_interval",
|
|
type=int,
|
|
default=10000,
|
|
help="The batch interval for saving model.",
|
|
)
|
|
parser.add_argument(
|
|
"--patience",
|
|
type=int_or_none,
|
|
default=None,
|
|
help="Number of epochs to wait without improvement "
|
|
"before stopping the training",
|
|
)
|
|
parser.add_argument(
|
|
"--val_scheduler_criterion",
|
|
type=str,
|
|
nargs=2,
|
|
default=("valid", "loss"),
|
|
help="The criterion used for the value given to the lr scheduler. "
|
|
'Give a pair referring the phase, "train" or "valid",'
|
|
'and the criterion name. The mode specifying "min" or "max" can '
|
|
"be changed by --scheduler_conf",
|
|
)
|
|
parser.add_argument(
|
|
"--early_stopping_criterion",
|
|
type=str,
|
|
nargs=3,
|
|
default=("valid", "loss", "min"),
|
|
help="The criterion used for judging of early stopping. "
|
|
'Give a pair referring the phase, "train" or "valid",'
|
|
'the criterion name and the mode, "min" or "max", e.g. "acc,max".',
|
|
)
|
|
parser.add_argument(
|
|
"--best_model_criterion",
|
|
nargs="+",
|
|
default=[
|
|
("train", "loss", "min"),
|
|
("valid", "loss", "min"),
|
|
("train", "acc", "max"),
|
|
("valid", "acc", "max"),
|
|
],
|
|
help="The criterion used for judging of the best model. "
|
|
'Give a pair referring the phase, "train" or "valid",'
|
|
'the criterion name, and the mode, "min" or "max", e.g. "acc,max".',
|
|
)
|
|
parser.add_argument(
|
|
"--keep_nbest_models",
|
|
type=int,
|
|
nargs="+",
|
|
default=[10],
|
|
help="Remove previous snapshots excluding the n-best scored epochs",
|
|
)
|
|
parser.add_argument(
|
|
"--nbest_averaging_interval",
|
|
type=int,
|
|
default=0,
|
|
help="The epoch interval to apply model averaging and save nbest models",
|
|
)
|
|
parser.add_argument(
|
|
"--grad_clip",
|
|
type=float,
|
|
default=5.0,
|
|
help="Gradient norm threshold to clip",
|
|
)
|
|
parser.add_argument(
|
|
"--grad_clip_type",
|
|
type=float,
|
|
default=2.0,
|
|
help="The type of the used p-norm for gradient clip. Can be inf",
|
|
)
|
|
parser.add_argument(
|
|
"--grad_noise",
|
|
type=str2bool,
|
|
default=False,
|
|
help="The flag to switch to use noise injection to "
|
|
"gradients during training",
|
|
)
|
|
parser.add_argument(
|
|
"--accum_grad",
|
|
type=int,
|
|
default=1,
|
|
help="The number of gradient accumulation",
|
|
)
|
|
parser.add_argument(
|
|
"--resume",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Enable resuming if checkpoint is existing",
|
|
)
|
|
parser.add_argument(
|
|
"--train_dtype",
|
|
default="float32",
|
|
choices=["float16", "float32", "float64"],
|
|
help="Data type for training.",
|
|
)
|
|
parser.add_argument(
|
|
"--use_amp",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Enable Automatic Mixed Precision. This feature requires pytorch>=1.6",
|
|
)
|
|
parser.add_argument(
|
|
"--log_interval",
|
|
default=None,
|
|
help="Show the logs every the number iterations in each epochs at the "
|
|
"training phase. If None is given, it is decided according the number "
|
|
"of training samples automatically .",
|
|
)
|
|
parser.add_argument(
|
|
"--use_tensorboard",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Enable tensorboard logging",
|
|
)
|
|
|
|
# pretrained model related
|
|
parser.add_argument(
|
|
"--init_param",
|
|
type=str,
|
|
default=[],
|
|
nargs="*",
|
|
help="Specify the file path used for initialization of parameters. "
|
|
"The format is '<file_path>:<src_key>:<dst_key>:<exclude_keys>', "
|
|
"where file_path is the model file path, "
|
|
"src_key specifies the key of model states to be used in the model file, "
|
|
"dst_key specifies the attribute of the model to be initialized, "
|
|
"and exclude_keys excludes keys of model states for the initialization."
|
|
"e.g.\n"
|
|
" # Load all parameters"
|
|
" --init_param some/where/model.pb\n"
|
|
" # Load only decoder parameters"
|
|
" --init_param some/where/model.pb:decoder:decoder\n"
|
|
" # Load only decoder parameters excluding decoder.embed"
|
|
" --init_param some/where/model.pb:decoder:decoder:decoder.embed\n"
|
|
" --init_param some/where/model.pb:decoder:decoder:decoder.embed\n",
|
|
)
|
|
parser.add_argument(
|
|
"--ignore_init_mismatch",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Ignore size mismatch when loading pre-trained model",
|
|
)
|
|
parser.add_argument(
|
|
"--freeze_param",
|
|
type=str,
|
|
default=[],
|
|
nargs="*",
|
|
help="Freeze parameters",
|
|
)
|
|
|
|
# dataset related
|
|
parser.add_argument(
|
|
"--dataset_type",
|
|
type=str,
|
|
default="small",
|
|
help="whether to use dataloader for large dataset",
|
|
)
|
|
parser.add_argument(
|
|
"--dataset_conf",
|
|
action=NestedDictAction,
|
|
default=dict(),
|
|
help=f"The keyword arguments for dataset",
|
|
)
|
|
parser.add_argument(
|
|
"--data_dir",
|
|
type=str,
|
|
default=None,
|
|
help="root path of data",
|
|
)
|
|
parser.add_argument(
|
|
"--train_set",
|
|
type=str,
|
|
default="train",
|
|
help="train dataset",
|
|
)
|
|
parser.add_argument(
|
|
"--valid_set",
|
|
type=str,
|
|
default="validation",
|
|
help="dev dataset",
|
|
)
|
|
parser.add_argument(
|
|
"--speed_perturb",
|
|
type=float,
|
|
nargs="+",
|
|
default=None,
|
|
help="speed perturb",
|
|
)
|
|
parser.add_argument(
|
|
"--use_preprocessor",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Apply preprocessing to data or not",
|
|
)
|
|
|
|
# optimization related
|
|
parser.add_argument(
|
|
"--optim",
|
|
type=lambda x: x.lower(),
|
|
default="adam",
|
|
help="The optimizer type",
|
|
)
|
|
parser.add_argument(
|
|
"--optim_conf",
|
|
action=NestedDictAction,
|
|
default=dict(),
|
|
help="The keyword arguments for optimizer",
|
|
)
|
|
parser.add_argument(
|
|
"--scheduler",
|
|
type=lambda x: str_or_none(x.lower()),
|
|
default=None,
|
|
help="The lr scheduler type",
|
|
)
|
|
parser.add_argument(
|
|
"--scheduler_conf",
|
|
action=NestedDictAction,
|
|
default=dict(),
|
|
help="The keyword arguments for lr scheduler",
|
|
)
|
|
|
|
# most task related
|
|
parser.add_argument(
|
|
"--init",
|
|
type=lambda x: str_or_none(x.lower()),
|
|
default=None,
|
|
help="The initialization method",
|
|
choices=[
|
|
"chainer",
|
|
"xavier_uniform",
|
|
"xavier_normal",
|
|
"kaiming_uniform",
|
|
"kaiming_normal",
|
|
None,
|
|
],
|
|
)
|
|
parser.add_argument(
|
|
"--token_list",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="A text mapping int-id to token",
|
|
)
|
|
parser.add_argument(
|
|
"--token_type",
|
|
type=str,
|
|
default="bpe",
|
|
choices=["bpe", "char", "word"],
|
|
help="",
|
|
)
|
|
parser.add_argument(
|
|
"--bpemodel",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="The model file fo sentencepiece",
|
|
)
|
|
parser.add_argument(
|
|
"--cleaner",
|
|
type=str_or_none,
|
|
choices=[None, "tacotron", "jaconv", "vietnamese"],
|
|
default=None,
|
|
help="Apply text cleaning",
|
|
)
|
|
parser.add_argument(
|
|
"--g2p",
|
|
type=str_or_none,
|
|
choices=g2p_choices,
|
|
default=None,
|
|
help="Specify g2p method if --token_type=phn",
|
|
)
|
|
|
|
# pai related
|
|
parser.add_argument(
|
|
"--use_pai",
|
|
type=str2bool,
|
|
default=False,
|
|
help="flag to indicate whether training on PAI",
|
|
)
|
|
parser.add_argument(
|
|
"--simple_ddp",
|
|
type=str2bool,
|
|
default=False,
|
|
)
|
|
parser.add_argument(
|
|
"--num_worker_count",
|
|
type=int,
|
|
default=1,
|
|
help="The number of machines on PAI.",
|
|
)
|
|
parser.add_argument(
|
|
"--access_key_id",
|
|
type=str,
|
|
default=None,
|
|
help="The username for oss.",
|
|
)
|
|
parser.add_argument(
|
|
"--access_key_secret",
|
|
type=str,
|
|
default=None,
|
|
help="The password for oss.",
|
|
)
|
|
parser.add_argument(
|
|
"--endpoint",
|
|
type=str,
|
|
default=None,
|
|
help="The endpoint for oss.",
|
|
)
|
|
parser.add_argument(
|
|
"--bucket_name",
|
|
type=str,
|
|
default=None,
|
|
help="The bucket name for oss.",
|
|
)
|
|
parser.add_argument(
|
|
"--oss_bucket",
|
|
default=None,
|
|
help="oss bucket.",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = get_parser()
|
|
args, extra_task_params = parser.parse_known_args()
|
|
if extra_task_params:
|
|
args = build_args(args, parser, extra_task_params)
|
|
|
|
# set random seed
|
|
set_all_random_seed(args.seed)
|
|
torch.backends.cudnn.enabled = args.cudnn_enabled
|
|
torch.backends.cudnn.benchmark = args.cudnn_benchmark
|
|
torch.backends.cudnn.deterministic = args.cudnn_deterministic
|
|
|
|
# ddp init
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_id)
|
|
args.distributed = args.ngpu > 1 or args.dist_world_size > 1
|
|
distributed_option = build_distributed(args)
|
|
|
|
# for logging
|
|
if not distributed_option.distributed or distributed_option.dist_rank == 0:
|
|
logging.basicConfig(
|
|
level="INFO",
|
|
format=f"[{os.uname()[1].split('.')[0]}]"
|
|
f" %(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
|
)
|
|
else:
|
|
logging.basicConfig(
|
|
level="ERROR",
|
|
format=f"[{os.uname()[1].split('.')[0]}]"
|
|
f" %(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
|
)
|
|
|
|
# prepare files for dataloader
|
|
prepare_data(args, distributed_option)
|
|
|
|
model = build_model(args)
|
|
model = model.to(
|
|
dtype=getattr(torch, args.train_dtype),
|
|
device="cuda" if args.ngpu > 0 else "cpu",
|
|
)
|
|
optimizers = build_optimizer(args, model=model)
|
|
schedulers = build_scheduler(args, optimizers)
|
|
|
|
logging.info("world size: {}, rank: {}, local_rank: {}".format(distributed_option.dist_world_size,
|
|
distributed_option.dist_rank,
|
|
distributed_option.local_rank))
|
|
logging.info(pytorch_cudnn_version())
|
|
logging.info("Args: {}".format(args))
|
|
logging.info(model_summary(model))
|
|
logging.info("Optimizer: {}".format(optimizers))
|
|
logging.info("Scheduler: {}".format(schedulers))
|
|
|
|
# dump args to config.yaml
|
|
if not distributed_option.distributed or distributed_option.dist_rank == 0:
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
with open(os.path.join(args.output_dir, "config.yaml"), "w") as f:
|
|
logging.info("Saving the configuration in {}/{}".format(args.output_dir, "config.yaml"))
|
|
if args.use_pai:
|
|
buffer = BytesIO()
|
|
torch.save({"config": vars(args)}, buffer)
|
|
args.oss_bucket.put_object(os.path.join(args.output_dir, "config.dict"), buffer.getvalue())
|
|
else:
|
|
yaml_no_alias_safe_dump(vars(args), f, indent=4, sort_keys=False)
|
|
|
|
for p in args.init_param:
|
|
logging.info(f"Loading pretrained params from {p}")
|
|
load_pretrained_model(
|
|
model=model,
|
|
init_param=p,
|
|
ignore_init_mismatch=args.ignore_init_mismatch,
|
|
map_location=f"cuda:{torch.cuda.current_device()}"
|
|
if args.ngpu > 0
|
|
else "cpu",
|
|
oss_bucket=args.oss_bucket,
|
|
)
|
|
|
|
# dataloader for training/validation
|
|
train_dataloader, valid_dataloader = build_dataloader(args)
|
|
|
|
# Trainer, including model, optimizers, etc.
|
|
trainer = build_trainer(
|
|
args=args,
|
|
model=model,
|
|
optimizers=optimizers,
|
|
schedulers=schedulers,
|
|
train_dataloader=train_dataloader,
|
|
valid_dataloader=valid_dataloader,
|
|
distributed_option=distributed_option
|
|
)
|
|
|
|
trainer.run()
|