mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
428 lines
14 KiB
Python
Executable File
428 lines
14 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
|
# MIT License (https://opensource.org/licenses/MIT)
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
import sys
|
|
from pathlib import Path
|
|
from typing import Any
|
|
from typing import List
|
|
from typing import Optional
|
|
from typing import Sequence
|
|
from typing import Tuple
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from scipy.signal import medfilt
|
|
from typeguard import check_argument_types
|
|
|
|
from funasr.models.frontend.wav_frontend import WavFrontendMel23
|
|
from funasr.tasks.diar import EENDOLADiarTask
|
|
from funasr.torch_utils.device_funcs import to_device
|
|
from funasr.utils import config_argparse
|
|
from funasr.utils.cli_utils import get_commandline_args
|
|
from funasr.utils.types import str2bool
|
|
from funasr.utils.types import str2triple_str
|
|
from funasr.utils.types import str_or_none
|
|
|
|
|
|
class Speech2Diarization:
|
|
"""Speech2Diarlization class
|
|
|
|
Examples:
|
|
>>> import soundfile
|
|
>>> import numpy as np
|
|
>>> speech2diar = Speech2Diarization("diar_sond_config.yml", "diar_sond.pb")
|
|
>>> profile = np.load("profiles.npy")
|
|
>>> audio, rate = soundfile.read("speech.wav")
|
|
>>> speech2diar(audio, profile)
|
|
{"spk1": [(int, int), ...], ...}
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
diar_train_config: Union[Path, str] = None,
|
|
diar_model_file: Union[Path, str] = None,
|
|
device: str = "cpu",
|
|
dtype: str = "float32",
|
|
):
|
|
assert check_argument_types()
|
|
|
|
# 1. Build Diarization model
|
|
diar_model, diar_train_args = EENDOLADiarTask.build_model_from_file(
|
|
config_file=diar_train_config,
|
|
model_file=diar_model_file,
|
|
device=device
|
|
)
|
|
frontend = None
|
|
if diar_train_args.frontend is not None and diar_train_args.frontend_conf is not None:
|
|
frontend = WavFrontendMel23(**diar_train_args.frontend_conf)
|
|
|
|
# set up seed for eda
|
|
np.random.seed(diar_train_args.seed)
|
|
torch.manual_seed(diar_train_args.seed)
|
|
torch.cuda.manual_seed(diar_train_args.seed)
|
|
os.environ['PYTORCH_SEED'] = str(diar_train_args.seed)
|
|
logging.info("diar_model: {}".format(diar_model))
|
|
logging.info("diar_train_args: {}".format(diar_train_args))
|
|
diar_model.to(dtype=getattr(torch, dtype)).eval()
|
|
|
|
self.diar_model = diar_model
|
|
self.diar_train_args = diar_train_args
|
|
self.device = device
|
|
self.dtype = dtype
|
|
self.frontend = frontend
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
speech: Union[torch.Tensor, np.ndarray],
|
|
speech_lengths: Union[torch.Tensor, np.ndarray] = None
|
|
):
|
|
"""Inference
|
|
|
|
Args:
|
|
speech: Input speech data
|
|
Returns:
|
|
diarization results
|
|
|
|
"""
|
|
assert check_argument_types()
|
|
# Input as audio signal
|
|
if isinstance(speech, np.ndarray):
|
|
speech = torch.tensor(speech)
|
|
|
|
if self.frontend is not None:
|
|
feats, feats_len = self.frontend.forward(speech, speech_lengths)
|
|
feats = to_device(feats, device=self.device)
|
|
feats_len = feats_len.int()
|
|
self.diar_model.frontend = None
|
|
else:
|
|
feats = speech
|
|
feats_len = speech_lengths
|
|
batch = {"speech": feats, "speech_lengths": feats_len}
|
|
batch = to_device(batch, device=self.device)
|
|
results = self.diar_model.estimate_sequential(**batch)
|
|
|
|
return results
|
|
|
|
@staticmethod
|
|
def from_pretrained(
|
|
model_tag: Optional[str] = None,
|
|
**kwargs: Optional[Any],
|
|
):
|
|
"""Build Speech2Diarization instance from the pretrained model.
|
|
|
|
Args:
|
|
model_tag (Optional[str]): Model tag of the pretrained models.
|
|
Currently, the tags of espnet_model_zoo are supported.
|
|
|
|
Returns:
|
|
Speech2Diarization: Speech2Diarization instance.
|
|
|
|
"""
|
|
if model_tag is not None:
|
|
try:
|
|
from espnet_model_zoo.downloader import ModelDownloader
|
|
|
|
except ImportError:
|
|
logging.error(
|
|
"`espnet_model_zoo` is not installed. "
|
|
"Please install via `pip install -U espnet_model_zoo`."
|
|
)
|
|
raise
|
|
d = ModelDownloader()
|
|
kwargs.update(**d.download_and_unpack(model_tag))
|
|
|
|
return Speech2Diarization(**kwargs)
|
|
|
|
|
|
def inference_modelscope(
|
|
diar_train_config: str,
|
|
diar_model_file: str,
|
|
output_dir: Optional[str] = None,
|
|
batch_size: int = 1,
|
|
dtype: str = "float32",
|
|
ngpu: int = 1,
|
|
num_workers: int = 0,
|
|
log_level: Union[int, str] = "INFO",
|
|
key_file: Optional[str] = None,
|
|
model_tag: Optional[str] = None,
|
|
allow_variable_data_keys: bool = True,
|
|
streaming: bool = False,
|
|
param_dict: Optional[dict] = None,
|
|
**kwargs,
|
|
):
|
|
assert check_argument_types()
|
|
if batch_size > 1:
|
|
raise NotImplementedError("batch decoding is not implemented")
|
|
if ngpu > 1:
|
|
raise NotImplementedError("only single GPU decoding is supported")
|
|
|
|
logging.basicConfig(
|
|
level=log_level,
|
|
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
|
)
|
|
logging.info("param_dict: {}".format(param_dict))
|
|
|
|
if ngpu >= 1 and torch.cuda.is_available():
|
|
device = "cuda"
|
|
else:
|
|
device = "cpu"
|
|
|
|
# 1. Build speech2diar
|
|
speech2diar_kwargs = dict(
|
|
diar_train_config=diar_train_config,
|
|
diar_model_file=diar_model_file,
|
|
device=device,
|
|
dtype=dtype,
|
|
)
|
|
logging.info("speech2diarization_kwargs: {}".format(speech2diar_kwargs))
|
|
speech2diar = Speech2Diarization.from_pretrained(
|
|
model_tag=model_tag,
|
|
**speech2diar_kwargs,
|
|
)
|
|
speech2diar.diar_model.eval()
|
|
|
|
def output_results_str(results: dict, uttid: str):
|
|
rst = []
|
|
mid = uttid.rsplit("-", 1)[0]
|
|
for key in results:
|
|
results[key] = [(x[0] / 100, x[1] / 100) for x in results[key]]
|
|
template = "SPEAKER {} 0 {:.2f} {:.2f} <NA> <NA> {} <NA> <NA>"
|
|
for spk, segs in results.items():
|
|
rst.extend([template.format(mid, st, ed, spk) for st, ed in segs])
|
|
|
|
return "\n".join(rst)
|
|
|
|
def _forward(
|
|
data_path_and_name_and_type: Sequence[Tuple[str, str, str]] = None,
|
|
raw_inputs: List[List[Union[np.ndarray, torch.Tensor, str, bytes]]] = None,
|
|
output_dir_v2: Optional[str] = None,
|
|
param_dict: Optional[dict] = None,
|
|
):
|
|
# 2. Build data-iterator
|
|
if data_path_and_name_and_type is None and raw_inputs is not None:
|
|
if isinstance(raw_inputs, torch.Tensor):
|
|
raw_inputs = raw_inputs.numpy()
|
|
data_path_and_name_and_type = [raw_inputs[0], "speech", "sound"]
|
|
loader = EENDOLADiarTask.build_streaming_iterator(
|
|
data_path_and_name_and_type,
|
|
dtype=dtype,
|
|
batch_size=batch_size,
|
|
key_file=key_file,
|
|
num_workers=num_workers,
|
|
preprocess_fn=EENDOLADiarTask.build_preprocess_fn(speech2diar.diar_train_args, False),
|
|
collate_fn=EENDOLADiarTask.build_collate_fn(speech2diar.diar_train_args, False),
|
|
allow_variable_data_keys=allow_variable_data_keys,
|
|
inference=True,
|
|
)
|
|
|
|
# 3. Start for-loop
|
|
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
|
|
if output_path is not None:
|
|
os.makedirs(output_path, exist_ok=True)
|
|
output_writer = open("{}/result.txt".format(output_path), "w")
|
|
result_list = []
|
|
for keys, batch in loader:
|
|
assert isinstance(batch, dict), type(batch)
|
|
assert all(isinstance(s, str) for s in keys), keys
|
|
_bs = len(next(iter(batch.values())))
|
|
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
|
|
# batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
|
|
|
|
results = speech2diar(**batch)
|
|
|
|
# post process
|
|
a = results[0][0].cpu().numpy()
|
|
a = medfilt(a, (11, 1))
|
|
rst = []
|
|
for spkid, frames in enumerate(a.T):
|
|
frames = np.pad(frames, (1, 1), 'constant')
|
|
changes, = np.where(np.diff(frames, axis=0) != 0)
|
|
fmt = "SPEAKER {:s} 1 {:7.2f} {:7.2f} <NA> <NA> {:s} <NA>"
|
|
for s, e in zip(changes[::2], changes[1::2]):
|
|
st = s / 10.
|
|
dur = (e - s) / 10.
|
|
rst.append(fmt.format(keys[0], st, dur, "{}_{}".format(keys[0], str(spkid))))
|
|
|
|
# Only supporting batch_size==1
|
|
value = "\n".join(rst)
|
|
item = {"key": keys[0], "value": value}
|
|
result_list.append(item)
|
|
if output_path is not None:
|
|
output_writer.write(value)
|
|
output_writer.flush()
|
|
|
|
if output_path is not None:
|
|
output_writer.close()
|
|
|
|
return result_list
|
|
|
|
return _forward
|
|
|
|
|
|
def inference(
|
|
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
|
|
diar_train_config: Optional[str],
|
|
diar_model_file: Optional[str],
|
|
output_dir: Optional[str] = None,
|
|
batch_size: int = 1,
|
|
dtype: str = "float32",
|
|
ngpu: int = 0,
|
|
seed: int = 0,
|
|
num_workers: int = 1,
|
|
log_level: Union[int, str] = "INFO",
|
|
key_file: Optional[str] = None,
|
|
model_tag: Optional[str] = None,
|
|
allow_variable_data_keys: bool = True,
|
|
streaming: bool = False,
|
|
smooth_size: int = 83,
|
|
dur_threshold: int = 10,
|
|
out_format: str = "vad",
|
|
**kwargs,
|
|
):
|
|
inference_pipeline = inference_modelscope(
|
|
diar_train_config=diar_train_config,
|
|
diar_model_file=diar_model_file,
|
|
output_dir=output_dir,
|
|
batch_size=batch_size,
|
|
dtype=dtype,
|
|
ngpu=ngpu,
|
|
seed=seed,
|
|
num_workers=num_workers,
|
|
log_level=log_level,
|
|
key_file=key_file,
|
|
model_tag=model_tag,
|
|
allow_variable_data_keys=allow_variable_data_keys,
|
|
streaming=streaming,
|
|
smooth_size=smooth_size,
|
|
dur_threshold=dur_threshold,
|
|
out_format=out_format,
|
|
**kwargs,
|
|
)
|
|
|
|
return inference_pipeline(data_path_and_name_and_type, raw_inputs=None)
|
|
|
|
|
|
def get_parser():
|
|
parser = config_argparse.ArgumentParser(
|
|
description="Speaker verification/x-vector extraction",
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
)
|
|
|
|
# Note(kamo): Use '_' instead of '-' as separator.
|
|
# '-' is confusing if written in yaml.
|
|
parser.add_argument(
|
|
"--log_level",
|
|
type=lambda x: x.upper(),
|
|
default="INFO",
|
|
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
|
|
help="The verbose level of logging",
|
|
)
|
|
|
|
parser.add_argument("--output_dir", type=str, required=False)
|
|
parser.add_argument(
|
|
"--ngpu",
|
|
type=int,
|
|
default=0,
|
|
help="The number of gpus. 0 indicates CPU mode",
|
|
)
|
|
parser.add_argument(
|
|
"--gpuid_list",
|
|
type=str,
|
|
default="",
|
|
help="The visible gpus",
|
|
)
|
|
parser.add_argument("--seed", type=int, default=0, help="Random seed")
|
|
parser.add_argument(
|
|
"--dtype",
|
|
default="float32",
|
|
choices=["float16", "float32", "float64"],
|
|
help="Data type",
|
|
)
|
|
parser.add_argument(
|
|
"--num_workers",
|
|
type=int,
|
|
default=1,
|
|
help="The number of workers used for DataLoader",
|
|
)
|
|
|
|
group = parser.add_argument_group("Input data related")
|
|
group.add_argument(
|
|
"--data_path_and_name_and_type",
|
|
type=str2triple_str,
|
|
required=False,
|
|
action="append",
|
|
)
|
|
group.add_argument("--key_file", type=str_or_none)
|
|
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
|
|
|
|
group = parser.add_argument_group("The model configuration related")
|
|
group.add_argument(
|
|
"--diar_train_config",
|
|
type=str,
|
|
help="diarization training configuration",
|
|
)
|
|
group.add_argument(
|
|
"--diar_model_file",
|
|
type=str,
|
|
help="diarization model parameter file",
|
|
)
|
|
group.add_argument(
|
|
"--dur_threshold",
|
|
type=int,
|
|
default=10,
|
|
help="The threshold for short segments in number frames"
|
|
)
|
|
parser.add_argument(
|
|
"--smooth_size",
|
|
type=int,
|
|
default=83,
|
|
help="The smoothing window length in number frames"
|
|
)
|
|
group.add_argument(
|
|
"--model_tag",
|
|
type=str,
|
|
help="Pretrained model tag. If specify this option, *_train_config and "
|
|
"*_file will be overwritten",
|
|
)
|
|
parser.add_argument(
|
|
"--batch_size",
|
|
type=int,
|
|
default=1,
|
|
help="The batch size for inference",
|
|
)
|
|
parser.add_argument("--streaming", type=str2bool, default=False)
|
|
|
|
return parser
|
|
|
|
|
|
def main(cmd=None):
|
|
print(get_commandline_args(), file=sys.stderr)
|
|
parser = get_parser()
|
|
args = parser.parse_args(cmd)
|
|
kwargs = vars(args)
|
|
kwargs.pop("config", None)
|
|
logging.info("args: {}".format(kwargs))
|
|
if args.output_dir is None:
|
|
jobid, n_gpu = 1, 1
|
|
gpuid = args.gpuid_list.split(",")[jobid - 1]
|
|
else:
|
|
jobid = int(args.output_dir.split(".")[-1])
|
|
n_gpu = len(args.gpuid_list.split(","))
|
|
gpuid = args.gpuid_list.split(",")[(jobid - 1) % n_gpu]
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = gpuid
|
|
results_list = inference(**kwargs)
|
|
for results in results_list:
|
|
print("{} {}".format(results["key"], results["value"]))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|