mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
134 lines
6.0 KiB
Python
134 lines
6.0 KiB
Python
# -*- encoding: utf-8 -*-
|
||
|
||
import os.path
|
||
from pathlib import Path
|
||
from typing import List, Union, Tuple
|
||
import numpy as np
|
||
|
||
from .utils.utils import (ONNXRuntimeError,
|
||
OrtInferSession, get_logger,
|
||
read_yaml)
|
||
from .utils.preprocessor import CodeMixTokenizerCommonPreprocessor
|
||
from .utils.utils import split_to_mini_sentence
|
||
logging = get_logger()
|
||
|
||
|
||
class TargetDelayTransformer():
|
||
def __init__(self, model_dir: Union[str, Path] = None,
|
||
batch_size: int = 1,
|
||
device_id: Union[str, int] = "-1",
|
||
quantize: bool = False,
|
||
intra_op_num_threads: int = 4
|
||
):
|
||
|
||
if not Path(model_dir).exists():
|
||
raise FileNotFoundError(f'{model_dir} does not exist.')
|
||
|
||
model_file = os.path.join(model_dir, 'model.onnx')
|
||
if quantize:
|
||
model_file = os.path.join(model_dir, 'model_quant.onnx')
|
||
config_file = os.path.join(model_dir, 'punc.yaml')
|
||
config = read_yaml(config_file)
|
||
|
||
self.ort_infer = OrtInferSession(model_file, device_id, intra_op_num_threads=intra_op_num_threads)
|
||
self.batch_size = 1
|
||
self.encoder_conf = config["encoder_conf"]
|
||
self.punc_list = config.punc_list
|
||
self.period = 0
|
||
for i in range(len(self.punc_list)):
|
||
if self.punc_list[i] == ",":
|
||
self.punc_list[i] = ","
|
||
elif self.punc_list[i] == "?":
|
||
self.punc_list[i] = "?"
|
||
elif self.punc_list[i] == "。":
|
||
self.period = i
|
||
self.preprocessor = CodeMixTokenizerCommonPreprocessor(
|
||
train=False,
|
||
token_type=config.token_type,
|
||
token_list=config.token_list,
|
||
bpemodel=config.bpemodel,
|
||
text_cleaner=config.cleaner,
|
||
g2p_type=config.g2p,
|
||
text_name="text",
|
||
non_linguistic_symbols=config.non_linguistic_symbols,
|
||
)
|
||
|
||
def __call__(self, text: Union[list, str], split_size=20):
|
||
data = {"text": text}
|
||
result = self.preprocessor(data=data, uid="12938712838719")
|
||
split_text = self.preprocessor.pop_split_text_data(result)
|
||
mini_sentences = split_to_mini_sentence(split_text, split_size)
|
||
mini_sentences_id = split_to_mini_sentence(data["text"], split_size)
|
||
assert len(mini_sentences) == len(mini_sentences_id)
|
||
cache_sent = []
|
||
cache_sent_id = []
|
||
new_mini_sentence = ""
|
||
new_mini_sentence_punc = []
|
||
cache_pop_trigger_limit = 200
|
||
for mini_sentence_i in range(len(mini_sentences)):
|
||
mini_sentence = mini_sentences[mini_sentence_i]
|
||
mini_sentence_id = mini_sentences_id[mini_sentence_i]
|
||
mini_sentence = cache_sent + mini_sentence
|
||
mini_sentence_id = np.concatenate((cache_sent_id, mini_sentence_id), axis=0)
|
||
data = {
|
||
"text": mini_sentence_id,
|
||
"text_lengths": len(mini_sentence_id),
|
||
}
|
||
try:
|
||
outputs = self.infer(data['text'], data['text_lengths'])
|
||
y = outputs[0]
|
||
_, indices = y.view(-1, y.shape[-1]).topk(1, dim=1)
|
||
punctuations = indices
|
||
assert punctuations.size()[0] == len(mini_sentence)
|
||
except ONNXRuntimeError:
|
||
logging.warning("error")
|
||
|
||
# Search for the last Period/QuestionMark as cache
|
||
if mini_sentence_i < len(mini_sentences) - 1:
|
||
sentenceEnd = -1
|
||
last_comma_index = -1
|
||
for i in range(len(punctuations) - 2, 1, -1):
|
||
if self.punc_list[punctuations[i]] == "。" or self.punc_list[punctuations[i]] == "?":
|
||
sentenceEnd = i
|
||
break
|
||
if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",":
|
||
last_comma_index = i
|
||
|
||
if sentenceEnd < 0 and len(mini_sentence) > cache_pop_trigger_limit and last_comma_index >= 0:
|
||
# The sentence it too long, cut off at a comma.
|
||
sentenceEnd = last_comma_index
|
||
punctuations[sentenceEnd] = self.period
|
||
cache_sent = mini_sentence[sentenceEnd + 1:]
|
||
cache_sent_id = mini_sentence_id[sentenceEnd + 1:]
|
||
mini_sentence = mini_sentence[0:sentenceEnd + 1]
|
||
punctuations = punctuations[0:sentenceEnd + 1]
|
||
|
||
punctuations_np = punctuations.cpu().numpy()
|
||
new_mini_sentence_punc += [int(x) for x in punctuations_np]
|
||
words_with_punc = []
|
||
for i in range(len(mini_sentence)):
|
||
if i > 0:
|
||
if len(mini_sentence[i][0].encode()) == 1 and len(mini_sentence[i - 1][0].encode()) == 1:
|
||
mini_sentence[i] = " " + mini_sentence[i]
|
||
words_with_punc.append(mini_sentence[i])
|
||
if self.punc_list[punctuations[i]] != "_":
|
||
words_with_punc.append(self.punc_list[punctuations[i]])
|
||
new_mini_sentence += "".join(words_with_punc)
|
||
# Add Period for the end of the sentence
|
||
new_mini_sentence_out = new_mini_sentence
|
||
new_mini_sentence_punc_out = new_mini_sentence_punc
|
||
if mini_sentence_i == len(mini_sentences) - 1:
|
||
if new_mini_sentence[-1] == "," or new_mini_sentence[-1] == "、":
|
||
new_mini_sentence_out = new_mini_sentence[:-1] + "。"
|
||
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.period]
|
||
elif new_mini_sentence[-1] != "。" and new_mini_sentence[-1] != "?":
|
||
new_mini_sentence_out = new_mini_sentence + "。"
|
||
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.period]
|
||
return new_mini_sentence_out, new_mini_sentence_punc_out
|
||
|
||
def infer(self, feats: List) -> Tuple[np.ndarray, np.ndarray]:
|
||
|
||
outputs = self.ort_infer(feats)
|
||
return outputs
|
||
|