FunASR/funasr/utils/prepare_data.py
2023-05-15 11:05:43 +08:00

194 lines
7.9 KiB
Python

import logging
import os
import shutil
from multiprocessing import Pool
import numpy as np
import torch.distributed as dist
import torchaudio
def filter_wav_text(data_dir, dataset):
wav_file = os.path.join(data_dir, dataset, "wav.scp")
text_file = os.path.join(data_dir, dataset, "text")
with open(wav_file) as f_wav, open(text_file) as f_text:
wav_lines = f_wav.readlines()
text_lines = f_text.readlines()
os.rename(wav_file, "{}.bak".format(wav_file))
os.rename(text_file, "{}.bak".format(text_file))
wav_dict = {}
for line in wav_lines:
parts = line.strip().split()
if len(parts) < 2:
continue
wav_dict[parts[0]] = parts[1]
text_dict = {}
for line in text_lines:
parts = line.strip().split()
if len(parts) < 2:
continue
text_dict[parts[0]] = " ".join(parts[1:])
filter_count = 0
with open(wav_file, "w") as f_wav, open(text_file, "w") as f_text:
for sample_name, wav_path in wav_dict.items():
if sample_name in text_dict.keys():
f_wav.write(sample_name + " " + wav_path + "\n")
f_text.write(sample_name + " " + text_dict[sample_name] + "\n")
else:
filter_count += 1
logging.info("{}/{} samples in {} are filtered because of the mismatch between wav.scp and text".
format(filter_count, len(wav_lines), dataset))
def wav2num_frame(wav_path, frontend_conf):
waveform, sampling_rate = torchaudio.load(wav_path)
n_frames = (waveform.shape[1] * 1000.0) / (sampling_rate * frontend_conf["frame_shift"] * frontend_conf["lfr_n"])
feature_dim = frontend_conf["n_mels"] * frontend_conf["lfr_m"]
return n_frames, feature_dim
def calc_shape_core(root_path, args, idx):
wav_scp_file = os.path.join(root_path, "wav.scp.{}".format(idx))
shape_file = os.path.join(root_path, "speech_shape.{}".format(idx))
with open(wav_scp_file) as f:
lines = f.readlines()
frontend_conf = args.frontend_conf
dataset_conf = args.dataset_conf
speech_length_min = dataset_conf.speech_length_min if hasattr(dataset_conf, "speech_length_min") else -1
speech_length_max = dataset_conf.speech_length_max if hasattr(dataset_conf, "speech_length_max") else -1
with open(shape_file, "w") as f:
for line in lines:
sample_name, wav_path = line.strip().split()
n_frames, feature_dim = wav2num_frame(wav_path, frontend_conf)
write_flag = True
if n_frames > 0 and speech_length_min > 0:
write_flag = n_frames >= speech_length_min
if n_frames > 0 and speech_length_max > 0:
write_flag = n_frames <= speech_length_max
if write_flag:
f.write("{} {},{}\n".format(sample_name, str(int(np.ceil(n_frames))), str(int(feature_dim))))
f.flush()
def calc_shape(args, dataset, nj=64):
shape_path = os.path.join(args.data_dir, dataset, "speech_shape")
if os.path.exists(shape_path):
logging.info('Shape file for small dataset already exists.')
return
split_shape_path = os.path.join(args.data_dir, dataset, "shape_files")
if os.path.exists(split_shape_path):
shutil.rmtree(split_shape_path)
os.mkdir(split_shape_path)
# split
wav_scp_file = os.path.join(args.data_dir, dataset, "wav.scp")
with open(wav_scp_file) as f:
lines = f.readlines()
num_lines = len(lines)
num_job_lines = num_lines // nj
start = 0
for i in range(nj):
end = start + num_job_lines
file = os.path.join(split_shape_path, "wav.scp.{}".format(str(i + 1)))
with open(file, "w") as f:
if i == nj - 1:
f.writelines(lines[start:])
else:
f.writelines(lines[start:end])
start = end
p = Pool(nj)
for i in range(nj):
p.apply_async(calc_shape_core, args=(split_shape_path, args, str(i + 1)))
logging.info("Generating shape files, please wait a few minutes...")
p.close()
p.join()
# combine
with open(shape_path, "w") as f:
for i in range(nj):
job_file = os.path.join(split_shape_path, "speech_shape.{}".format(str(i + 1)))
with open(job_file) as job_f:
lines = job_f.readlines()
f.writelines(lines)
logging.info('Generating shape files done.')
def generate_data_list(data_dir, dataset, nj=64):
list_file = os.path.join(data_dir, dataset, "data.list")
if os.path.exists(list_file):
logging.info('Data list for large dataset already exists.')
return
split_path = os.path.join(data_dir, dataset, "split")
if os.path.exists(split_path):
shutil.rmtree(split_path)
os.mkdir(split_path)
with open(os.path.join(data_dir, dataset, "wav.scp")) as f_wav:
wav_lines = f_wav.readlines()
with open(os.path.join(data_dir, dataset, "text")) as f_text:
text_lines = f_text.readlines()
num_lines = len(wav_lines)
num_job_lines = num_lines // nj
start = 0
for i in range(nj):
end = start + num_job_lines
split_path_nj = os.path.join(split_path, str(i + 1))
os.mkdir(split_path_nj)
wav_file = os.path.join(split_path_nj, "wav.scp")
text_file = os.path.join(split_path_nj, "text")
with open(wav_file, "w") as fw, open(text_file, "w") as ft:
if i == nj - 1:
fw.writelines(wav_lines[start:])
ft.writelines(text_lines[start:])
else:
fw.writelines(wav_lines[start:end])
ft.writelines(text_lines[start:end])
start = end
with open(list_file, "w") as f_data:
for i in range(nj):
wav_path = os.path.join(split_path, str(i + 1), "wav.scp")
text_path = os.path.join(split_path, str(i + 1), "text")
f_data.write(wav_path + " " + text_path + "\n")
def prepare_data(args, distributed_option):
distributed = distributed_option.distributed
if not distributed or distributed_option.dist_rank == 0:
filter_wav_text(args.data_dir, args.train_set)
filter_wav_text(args.data_dir, args.valid_set)
if args.dataset_type == "small":
calc_shape(args, args.train_set)
calc_shape(args, args.valid_set)
if args.dataset_type == "large":
generate_data_list(args.data_dir, args.train_set)
generate_data_list(args.data_dir, args.valid_set)
if args.dataset_type == "small":
args.train_shape_file = [os.path.join(args.data_dir, args.train_set, "speech_shape")]
args.valid_shape_file = [os.path.join(args.data_dir, args.valid_set, "speech_shape")]
data_names = args.dataset_conf.get("data_names", "speech,text").split(",")
data_types = args.dataset_conf.get("data_types", "sound,text").split(",")
args.train_data_path_and_name_and_type = [
["{}/{}/wav.scp".format(args.data_dir, args.train_set), data_names[0], data_types[0]],
["{}/{}/text".format(args.data_dir, args.train_set), data_names[1], data_types[1]]
]
args.valid_data_path_and_name_and_type = [
["{}/{}/wav.scp".format(args.data_dir, args.valid_set), data_names[0], data_types[0]],
["{}/{}/text".format(args.data_dir, args.valid_set), data_names[1], data_types[1]]
]
if args.embed_path is not None:
args.train_data_path_and_name_and_type[0].append(
"{}/embed/kaldi_ark".format(os.path.join(args.embed_path, "embeds", args.train_set, "embeds.scp")))
args.valid_data_path_and_name_and_type[0].append(
"{}/embed/kaldi_ark".format(os.path.join(args.embed_path, "embeds", args.dev_set, "embeds.scp")))
else:
args.train_data_file = os.path.join(args.data_dir, args.train_set, "data.list")
args.valid_data_file = os.path.join(args.data_dir, args.valid_set, "data.list")
if distributed:
dist.barrier()