mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
283 lines
13 KiB
Python
283 lines
13 KiB
Python
#!/usr/bin/env python3
|
||
# -*- encoding: utf-8 -*-
|
||
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
||
# MIT License (https://opensource.org/licenses/MIT)
|
||
|
||
from typing import Optional
|
||
from typing import Union
|
||
|
||
import numpy as np
|
||
import torch
|
||
import os
|
||
|
||
from funasr.build_utils.build_model_from_file import build_model_from_file
|
||
from funasr.datasets.preprocessor import CodeMixTokenizerCommonPreprocessor
|
||
from funasr.datasets.preprocessor import split_to_mini_sentence
|
||
from funasr.torch_utils.device_funcs import to_device
|
||
from funasr.torch_utils.forward_adaptor import ForwardAdaptor
|
||
|
||
|
||
class Text2Punc:
|
||
|
||
def __init__(
|
||
self,
|
||
train_config: Optional[str],
|
||
model_file: Optional[str],
|
||
device: str = "cpu",
|
||
dtype: str = "float32",
|
||
):
|
||
# Build Model
|
||
model, train_args = build_model_from_file(train_config, model_file, None, device, task_name="punc")
|
||
self.device = device
|
||
# Wrape model to make model.nll() data-parallel
|
||
self.wrapped_model = ForwardAdaptor(model, "inference")
|
||
self.wrapped_model.to(dtype=getattr(torch, dtype)).to(device=device).eval()
|
||
# logging.info(f"Model:\n{model}")
|
||
self.punc_list = train_args.punc_list
|
||
self.period = 0
|
||
for i in range(len(self.punc_list)):
|
||
if self.punc_list[i] == ",":
|
||
self.punc_list[i] = ","
|
||
elif self.punc_list[i] == "?":
|
||
self.punc_list[i] = "?"
|
||
elif self.punc_list[i] == "。":
|
||
self.period = i
|
||
self.seg_dict_file = None
|
||
self.seg_jieba = False
|
||
if "seg_jieba" in train_args:
|
||
self.seg_jieba = train_args.seg_jieba
|
||
self.seg_dict_file = os.path.dirname(model_file)+"/"+ "jieba_usr_dict"
|
||
self.preprocessor = CodeMixTokenizerCommonPreprocessor(
|
||
train=False,
|
||
token_type=train_args.token_type,
|
||
token_list=train_args.token_list,
|
||
bpemodel=train_args.bpemodel,
|
||
text_cleaner=train_args.cleaner,
|
||
g2p_type=train_args.g2p,
|
||
text_name="text",
|
||
non_linguistic_symbols=train_args.non_linguistic_symbols,
|
||
seg_jieba=self.seg_jieba,
|
||
seg_dict_file=self.seg_dict_file
|
||
)
|
||
|
||
@torch.no_grad()
|
||
def __call__(self, text: Union[list, str], split_size=20):
|
||
data = {"text": text}
|
||
result = self.preprocessor(data=data, uid="12938712838719")
|
||
split_text = self.preprocessor.pop_split_text_data(result)
|
||
mini_sentences = split_to_mini_sentence(split_text, split_size)
|
||
mini_sentences_id = split_to_mini_sentence(data["text"], split_size)
|
||
assert len(mini_sentences) == len(mini_sentences_id)
|
||
cache_sent = []
|
||
cache_sent_id = torch.from_numpy(np.array([], dtype='int32'))
|
||
new_mini_sentence = ""
|
||
new_mini_sentence_punc = []
|
||
cache_pop_trigger_limit = 200
|
||
for mini_sentence_i in range(len(mini_sentences)):
|
||
mini_sentence = mini_sentences[mini_sentence_i]
|
||
mini_sentence_id = mini_sentences_id[mini_sentence_i]
|
||
mini_sentence = cache_sent + mini_sentence
|
||
mini_sentence_id = np.concatenate((cache_sent_id, mini_sentence_id), axis=0)
|
||
data = {
|
||
"text": torch.unsqueeze(torch.from_numpy(mini_sentence_id), 0),
|
||
"text_lengths": torch.from_numpy(np.array([len(mini_sentence_id)], dtype='int32')),
|
||
}
|
||
data = to_device(data, self.device)
|
||
y, _ = self.wrapped_model(**data)
|
||
_, indices = y.view(-1, y.shape[-1]).topk(1, dim=1)
|
||
punctuations = indices
|
||
if indices.size()[0] != 1:
|
||
punctuations = torch.squeeze(indices)
|
||
assert punctuations.size()[0] == len(mini_sentence)
|
||
|
||
# Search for the last Period/QuestionMark as cache
|
||
if mini_sentence_i < len(mini_sentences) - 1:
|
||
sentenceEnd = -1
|
||
last_comma_index = -1
|
||
for i in range(len(punctuations) - 2, 1, -1):
|
||
if self.punc_list[punctuations[i]] == "。" or self.punc_list[punctuations[i]] == "?":
|
||
sentenceEnd = i
|
||
break
|
||
if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",":
|
||
last_comma_index = i
|
||
|
||
if sentenceEnd < 0 and len(mini_sentence) > cache_pop_trigger_limit and last_comma_index >= 0:
|
||
# The sentence it too long, cut off at a comma.
|
||
sentenceEnd = last_comma_index
|
||
punctuations[sentenceEnd] = self.period
|
||
cache_sent = mini_sentence[sentenceEnd + 1:]
|
||
cache_sent_id = mini_sentence_id[sentenceEnd + 1:]
|
||
mini_sentence = mini_sentence[0:sentenceEnd + 1]
|
||
punctuations = punctuations[0:sentenceEnd + 1]
|
||
|
||
# if len(punctuations) == 0:
|
||
# continue
|
||
|
||
punctuations_np = punctuations.cpu().numpy()
|
||
new_mini_sentence_punc += [int(x) for x in punctuations_np]
|
||
words_with_punc = []
|
||
for i in range(len(mini_sentence)):
|
||
if (i==0 or self.punc_list[punctuations[i-1]] == "。" or self.punc_list[punctuations[i-1]] == "?") and len(mini_sentence[i][0].encode()) == 1:
|
||
mini_sentence[i] = mini_sentence[i].capitalize()
|
||
if i == 0:
|
||
if len(mini_sentence[i][0].encode()) == 1:
|
||
mini_sentence[i] = " " + mini_sentence[i]
|
||
if i > 0:
|
||
if len(mini_sentence[i][0].encode()) == 1 and len(mini_sentence[i - 1][0].encode()) == 1:
|
||
mini_sentence[i] = " " + mini_sentence[i]
|
||
words_with_punc.append(mini_sentence[i])
|
||
if self.punc_list[punctuations[i]] != "_":
|
||
punc_res = self.punc_list[punctuations[i]]
|
||
if len(mini_sentence[i][0].encode()) == 1:
|
||
if punc_res == ",":
|
||
punc_res = ","
|
||
elif punc_res == "。":
|
||
punc_res = "."
|
||
elif punc_res == "?":
|
||
punc_res = "?"
|
||
words_with_punc.append(punc_res)
|
||
new_mini_sentence += "".join(words_with_punc)
|
||
# Add Period for the end of the sentence
|
||
new_mini_sentence_out = new_mini_sentence
|
||
new_mini_sentence_punc_out = new_mini_sentence_punc
|
||
if mini_sentence_i == len(mini_sentences) - 1:
|
||
if new_mini_sentence[-1] == "," or new_mini_sentence[-1] == "、":
|
||
new_mini_sentence_out = new_mini_sentence[:-1] + "。"
|
||
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.period]
|
||
elif new_mini_sentence[-1] == ",":
|
||
new_mini_sentence_out = new_mini_sentence[:-1] + "."
|
||
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.period]
|
||
elif new_mini_sentence[-1] != "。" and new_mini_sentence[-1] != "?" and len(new_mini_sentence[-1].encode())==0:
|
||
new_mini_sentence_out = new_mini_sentence + "。"
|
||
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.period]
|
||
elif new_mini_sentence[-1] != "." and new_mini_sentence[-1] != "?" and len(new_mini_sentence[-1].encode())==1:
|
||
new_mini_sentence_out = new_mini_sentence + "."
|
||
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.period]
|
||
return new_mini_sentence_out, new_mini_sentence_punc_out
|
||
|
||
|
||
class Text2PuncVADRealtime:
|
||
|
||
def __init__(
|
||
self,
|
||
train_config: Optional[str],
|
||
model_file: Optional[str],
|
||
device: str = "cpu",
|
||
dtype: str = "float32",
|
||
):
|
||
# Build Model
|
||
model, train_args = build_model_from_file(train_config, model_file, None, device, task_name="punc")
|
||
self.device = device
|
||
# Wrape model to make model.nll() data-parallel
|
||
self.wrapped_model = ForwardAdaptor(model, "inference")
|
||
self.wrapped_model.to(dtype=getattr(torch, dtype)).to(device=device).eval()
|
||
# logging.info(f"Model:\n{model}")
|
||
self.punc_list = train_args.punc_list
|
||
self.period = 0
|
||
for i in range(len(self.punc_list)):
|
||
if self.punc_list[i] == ",":
|
||
self.punc_list[i] = ","
|
||
elif self.punc_list[i] == "?":
|
||
self.punc_list[i] = "?"
|
||
elif self.punc_list[i] == "。":
|
||
self.period = i
|
||
self.preprocessor = CodeMixTokenizerCommonPreprocessor(
|
||
train=False,
|
||
token_type=train_args.token_type,
|
||
token_list=train_args.token_list,
|
||
bpemodel=train_args.bpemodel,
|
||
text_cleaner=train_args.cleaner,
|
||
g2p_type=train_args.g2p,
|
||
text_name="text",
|
||
non_linguistic_symbols=train_args.non_linguistic_symbols,
|
||
)
|
||
|
||
@torch.no_grad()
|
||
def __call__(self, text: Union[list, str], cache: list, split_size=20):
|
||
if cache is not None and len(cache) > 0:
|
||
precache = "".join(cache)
|
||
else:
|
||
precache = ""
|
||
cache = []
|
||
data = {"text": precache + " " + text}
|
||
result = self.preprocessor(data=data, uid="12938712838719")
|
||
split_text = self.preprocessor.pop_split_text_data(result)
|
||
mini_sentences = split_to_mini_sentence(split_text, split_size)
|
||
mini_sentences_id = split_to_mini_sentence(data["text"], split_size)
|
||
assert len(mini_sentences) == len(mini_sentences_id)
|
||
cache_sent = []
|
||
cache_sent_id = torch.from_numpy(np.array([], dtype='int32'))
|
||
sentence_punc_list = []
|
||
sentence_words_list = []
|
||
cache_pop_trigger_limit = 200
|
||
skip_num = 0
|
||
for mini_sentence_i in range(len(mini_sentences)):
|
||
mini_sentence = mini_sentences[mini_sentence_i]
|
||
mini_sentence_id = mini_sentences_id[mini_sentence_i]
|
||
mini_sentence = cache_sent + mini_sentence
|
||
mini_sentence_id = np.concatenate((cache_sent_id, mini_sentence_id), axis=0)
|
||
data = {
|
||
"text": torch.unsqueeze(torch.from_numpy(mini_sentence_id), 0),
|
||
"text_lengths": torch.from_numpy(np.array([len(mini_sentence_id)], dtype='int32')),
|
||
"vad_indexes": torch.from_numpy(np.array([len(cache)], dtype='int32')),
|
||
}
|
||
data = to_device(data, self.device)
|
||
y, _ = self.wrapped_model(**data)
|
||
_, indices = y.view(-1, y.shape[-1]).topk(1, dim=1)
|
||
punctuations = indices
|
||
if indices.size()[0] != 1:
|
||
punctuations = torch.squeeze(indices)
|
||
assert punctuations.size()[0] == len(mini_sentence)
|
||
|
||
# Search for the last Period/QuestionMark as cache
|
||
if mini_sentence_i < len(mini_sentences) - 1:
|
||
sentenceEnd = -1
|
||
last_comma_index = -1
|
||
for i in range(len(punctuations) - 2, 1, -1):
|
||
if self.punc_list[punctuations[i]] == "。" or self.punc_list[punctuations[i]] == "?":
|
||
sentenceEnd = i
|
||
break
|
||
if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",":
|
||
last_comma_index = i
|
||
|
||
if sentenceEnd < 0 and len(mini_sentence) > cache_pop_trigger_limit and last_comma_index >= 0:
|
||
# The sentence it too long, cut off at a comma.
|
||
sentenceEnd = last_comma_index
|
||
punctuations[sentenceEnd] = self.period
|
||
cache_sent = mini_sentence[sentenceEnd + 1:]
|
||
cache_sent_id = mini_sentence_id[sentenceEnd + 1:]
|
||
mini_sentence = mini_sentence[0:sentenceEnd + 1]
|
||
punctuations = punctuations[0:sentenceEnd + 1]
|
||
|
||
punctuations_np = punctuations.cpu().numpy()
|
||
sentence_punc_list += [self.punc_list[int(x)] for x in punctuations_np]
|
||
sentence_words_list += mini_sentence
|
||
|
||
assert len(sentence_punc_list) == len(sentence_words_list)
|
||
words_with_punc = []
|
||
sentence_punc_list_out = []
|
||
for i in range(0, len(sentence_words_list)):
|
||
if i > 0:
|
||
if len(sentence_words_list[i][0].encode()) == 1 and len(sentence_words_list[i - 1][-1].encode()) == 1:
|
||
sentence_words_list[i] = " " + sentence_words_list[i]
|
||
if skip_num < len(cache):
|
||
skip_num += 1
|
||
else:
|
||
words_with_punc.append(sentence_words_list[i])
|
||
if skip_num >= len(cache):
|
||
sentence_punc_list_out.append(sentence_punc_list[i])
|
||
if sentence_punc_list[i] != "_":
|
||
words_with_punc.append(sentence_punc_list[i])
|
||
sentence_out = "".join(words_with_punc)
|
||
|
||
sentenceEnd = -1
|
||
for i in range(len(sentence_punc_list) - 2, 1, -1):
|
||
if sentence_punc_list[i] == "。" or sentence_punc_list[i] == "?":
|
||
sentenceEnd = i
|
||
break
|
||
cache_out = sentence_words_list[sentenceEnd + 1:]
|
||
if sentence_out[-1] in self.punc_list:
|
||
sentence_out = sentence_out[:-1]
|
||
sentence_punc_list_out[-1] = "_"
|
||
return sentence_out, sentence_punc_list_out, cache_out
|