FunASR/funasr/datasets/dataset_jsonl.py
2023-12-11 13:42:40 +08:00

155 lines
4.1 KiB
Python

import torch
import json
import torch.distributed as dist
import numpy as np
import kaldiio
import librosa
import torchaudio
import time
import logging
def load_audio(audio_path: str, fs: int=16000):
audio = None
if audio_path.startswith("oss:"):
pass
elif audio_path.startswith("odps:"):
pass
else:
if ".ark:" in audio_path:
audio = kaldiio.load_mat(audio_path)
else:
# audio, fs = librosa.load(audio_path, sr=fs)
audio, fs = torchaudio.load(audio_path)
audio = audio[0, :]
return audio
def extract_features(data, date_type: str="sound", frontend=None):
if date_type == "sound":
if isinstance(data, np.ndarray):
data = torch.from_numpy(data).to(torch.float32)
data_len = torch.tensor([data.shape[0]]).to(torch.int32)
feat, feats_lens = frontend(data[None, :], data_len)
feat = feat[0, :, :]
else:
feat, feats_lens = torch.from_numpy(data).to(torch.float32), torch.tensor([data.shape[0]]).to(torch.int32)
return feat, feats_lens
class IndexedDatasetJsonl(torch.utils.data.Dataset):
def __init__(self, path):
super().__init__()
contents = []
with open(path, encoding='utf-8') as fin:
for line in fin:
data = json.loads(line.strip())
if "text" in data: # for sft
self.contents.append(data['text'])
if "source" in data: # for speech lab pretrain
prompt = data["prompt"]
source = data["source"]
target = data["target"]
source_len = data["source_len"]
target_len = data["target_len"]
contents.append({"source": source,
"prompt": prompt,
"target": target,
"source_len": source_len,
"target_len": target_len,
}
)
self.contents = []
total_num = len(contents)
try:
rank = dist.get_rank()
world_size = dist.get_world_size()
except:
rank = 0
world_size = 1
logging.warning("distributed is not initialized, only single shard")
num_per_rank = total_num // world_size
# rank = 0
# import ipdb; ipdb.set_trace()
self.contents = contents[rank * num_per_rank:(rank + 1) * num_per_rank]
logging.info("in rank: {}, num of samplers: {}, total_num of samplers across ranks: {}".format(rank, len(self.contents), len(contents)))
def __len__(self):
return len(self.contents)
def __getitem__(self, index):
return self.contents[index]
def get_source_len(self, data_dict):
return data_dict["source_len"]
def get_target_len(self, data_dict):
return data_dict["target_len"] if "target_len" in data_dict else 0
class AudioDataset(torch.utils.data.Dataset):
def __init__(self, path, frontend=None, tokenizer=None, int_pad_value: int = -1, float_pad_value: float = 0.0, **kwargs):
super().__init__()
self.indexed_dataset = IndexedDatasetJsonl(path)
self.frontend = frontend.forward
self.fs = 16000 if frontend is None else frontend.fs
self.data_type = "sound"
self.tokenizer = tokenizer
self.int_pad_value = int_pad_value
self.float_pad_value = float_pad_value
def __len__(self):
return len(self.indexed_dataset)
def __getitem__(self, index):
item = self.indexed_dataset[index]
# return item
source = item["source"]
data_src = load_audio(source, fs=self.fs)
speech, speech_lengths = extract_features(data_src, self.data_type, self.frontend)
target = item["target"]
ids = self.tokenizer.encode(target)
ids_lengths = len(ids)
text, text_lengths = torch.tensor(ids, dtype=torch.int64), torch.tensor([ids_lengths], dtype=torch.int32)
return {"speech": speech,
"speech_lengths": speech_lengths,
"text": text,
"text_lengths": text_lengths,
}
def collator(self, samples: list=None):
# return samples
outputs = {}
for sample in samples:
for key in sample.keys():
if key not in outputs:
outputs[key] = []
outputs[key].append(sample[key])
for key, data_list in outputs.items():
if data_list[0].dtype == torch.int64:
pad_value = self.int_pad_value
else:
pad_value = self.float_pad_value
outputs[key] = torch.nn.utils.rnn.pad_sequence(data_list, batch_first=True, padding_value=pad_value)
return outputs