mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
298 lines
9.8 KiB
Python
298 lines
9.8 KiB
Python
import argparse
|
|
import logging
|
|
import os
|
|
from pathlib import Path
|
|
from typing import Callable
|
|
from typing import Collection
|
|
from typing import Dict
|
|
from typing import List
|
|
from typing import Optional
|
|
from typing import Tuple
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import yaml
|
|
|
|
from funasr.datasets.collate_fn import CommonCollateFn
|
|
from funasr.datasets.preprocessor import CommonPreprocessor
|
|
from funasr.layers.abs_normalize import AbsNormalize
|
|
from funasr.layers.global_mvn import GlobalMVN
|
|
from funasr.layers.utterance_mvn import UtteranceMVN
|
|
from funasr.models.ctc import CTC
|
|
from funasr.models.decoder.abs_decoder import AbsDecoder
|
|
from funasr.models.decoder.rnn_decoder import RNNDecoder
|
|
from funasr.models.decoder.sanm_decoder import ParaformerSANMDecoder, FsmnDecoderSCAMAOpt
|
|
from funasr.models.decoder.transformer_decoder import (
|
|
DynamicConvolution2DTransformerDecoder, # noqa: H301
|
|
)
|
|
from funasr.models.decoder.transformer_decoder import DynamicConvolutionTransformerDecoder
|
|
from funasr.models.decoder.transformer_decoder import (
|
|
LightweightConvolution2DTransformerDecoder, # noqa: H301
|
|
)
|
|
from funasr.models.decoder.transformer_decoder import (
|
|
LightweightConvolutionTransformerDecoder, # noqa: H301
|
|
)
|
|
from funasr.models.decoder.transformer_decoder import ParaformerDecoderSAN
|
|
from funasr.models.decoder.transformer_decoder import TransformerDecoder
|
|
from funasr.models.decoder.contextual_decoder import ContextualParaformerDecoder
|
|
from funasr.models.decoder.transformer_decoder import SAAsrTransformerDecoder
|
|
from funasr.models.e2e_asr import ASRModel
|
|
from funasr.models.decoder.rnnt_decoder import RNNTDecoder
|
|
from funasr.models.joint_net.joint_network import JointNetwork
|
|
from funasr.models.e2e_asr_paraformer import Paraformer, ParaformerOnline, ParaformerBert, BiCifParaformer, ContextualParaformer
|
|
from funasr.models.e2e_asr_contextual_paraformer import NeatContextualParaformer
|
|
from funasr.models.e2e_tp import TimestampPredictor
|
|
from funasr.models.e2e_asr_mfcca import MFCCA
|
|
from funasr.models.e2e_sa_asr import SAASRModel
|
|
from funasr.models.e2e_uni_asr import UniASR
|
|
from funasr.models.e2e_asr_transducer import TransducerModel, UnifiedTransducerModel
|
|
from funasr.models.e2e_asr_bat import BATModel
|
|
from funasr.models.encoder.abs_encoder import AbsEncoder
|
|
from funasr.models.encoder.conformer_encoder import ConformerEncoder, ConformerChunkEncoder
|
|
from funasr.models.encoder.data2vec_encoder import Data2VecEncoder
|
|
from funasr.models.encoder.rnn_encoder import RNNEncoder
|
|
from funasr.models.encoder.sanm_encoder import SANMEncoder, SANMEncoderChunkOpt
|
|
from funasr.models.encoder.transformer_encoder import TransformerEncoder
|
|
from funasr.models.encoder.mfcca_encoder import MFCCAEncoder
|
|
from funasr.models.encoder.resnet34_encoder import ResNet34Diar
|
|
from funasr.models.frontend.abs_frontend import AbsFrontend
|
|
from funasr.models.frontend.default import DefaultFrontend
|
|
from funasr.models.frontend.default import MultiChannelFrontend
|
|
from funasr.models.frontend.fused import FusedFrontends
|
|
from funasr.models.frontend.s3prl import S3prlFrontend
|
|
from funasr.models.frontend.wav_frontend import WavFrontend
|
|
from funasr.models.frontend.windowing import SlidingWindow
|
|
from funasr.models.postencoder.abs_postencoder import AbsPostEncoder
|
|
from funasr.models.postencoder.hugging_face_transformers_postencoder import (
|
|
HuggingFaceTransformersPostEncoder, # noqa: H301
|
|
)
|
|
from funasr.models.predictor.cif import CifPredictor, CifPredictorV2, CifPredictorV3, BATPredictor
|
|
from funasr.models.preencoder.abs_preencoder import AbsPreEncoder
|
|
from funasr.models.preencoder.linear import LinearProjection
|
|
from funasr.models.preencoder.sinc import LightweightSincConvs
|
|
from funasr.models.specaug.abs_specaug import AbsSpecAug
|
|
from funasr.models.specaug.specaug import SpecAug
|
|
from funasr.models.specaug.specaug import SpecAugLFR
|
|
from funasr.modules.subsampling import Conv1dSubsampling
|
|
from funasr.tasks.abs_task import AbsTask
|
|
from funasr.tokenizer.phoneme_tokenizer import g2p_choices
|
|
from funasr.torch_utils.initialize import initialize
|
|
from funasr.models.base_model import FunASRModel
|
|
from funasr.train.class_choices import ClassChoices
|
|
from funasr.train.trainer import Trainer
|
|
from funasr.utils.get_default_kwargs import get_default_kwargs
|
|
from funasr.utils.nested_dict_action import NestedDictAction
|
|
from funasr.utils.types import float_or_none
|
|
from funasr.utils.types import int_or_none
|
|
from funasr.utils.types import str2bool
|
|
from funasr.utils.types import str_or_none
|
|
|
|
# from funasr.models.paraformer import Paraformer
|
|
frontend_choices = ClassChoices(
|
|
name="frontend",
|
|
classes=dict(
|
|
default=DefaultFrontend,
|
|
sliding_window=SlidingWindow,
|
|
s3prl=S3prlFrontend,
|
|
fused=FusedFrontends,
|
|
wav_frontend=WavFrontend,
|
|
multichannelfrontend=MultiChannelFrontend,
|
|
),
|
|
type_check=AbsFrontend,
|
|
default="default",
|
|
)
|
|
specaug_choices = ClassChoices(
|
|
name="specaug",
|
|
classes=dict(
|
|
specaug=SpecAug,
|
|
specaug_lfr=SpecAugLFR,
|
|
),
|
|
type_check=AbsSpecAug,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
# specaug_choices = {"specaug":SpecAug}
|
|
normalize_choices = ClassChoices(
|
|
"normalize",
|
|
classes=dict(
|
|
global_mvn=GlobalMVN,
|
|
utterance_mvn=UtteranceMVN,
|
|
),
|
|
type_check=AbsNormalize,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
# model_choices = ClassChoices(
|
|
# "model",
|
|
# classes=dict(
|
|
# asr=ASRModel,
|
|
# uniasr=UniASR,
|
|
# paraformer=Paraformer,
|
|
# paraformer_online=ParaformerOnline,
|
|
# paraformer_bert=ParaformerBert,
|
|
# bicif_paraformer=BiCifParaformer,
|
|
# contextual_paraformer=ContextualParaformer,
|
|
# neatcontextual_paraformer=NeatContextualParaformer,
|
|
# mfcca=MFCCA,
|
|
# timestamp_prediction=TimestampPredictor,
|
|
# rnnt=TransducerModel,
|
|
# rnnt_unified=UnifiedTransducerModel,
|
|
# bat=BATModel,
|
|
# sa_asr=SAASRModel,
|
|
# ),
|
|
# type_check=None,
|
|
# default="asr",
|
|
# )
|
|
preencoder_choices = ClassChoices(
|
|
name="preencoder",
|
|
classes=dict(
|
|
sinc=LightweightSincConvs,
|
|
linear=LinearProjection,
|
|
),
|
|
type_check=AbsPreEncoder,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
encoder_choices = ClassChoices(
|
|
"encoder",
|
|
classes=dict(
|
|
conformer=ConformerEncoder,
|
|
transformer=TransformerEncoder,
|
|
rnn=RNNEncoder,
|
|
sanm=SANMEncoder,
|
|
sanm_chunk_opt=SANMEncoderChunkOpt,
|
|
data2vec_encoder=Data2VecEncoder,
|
|
mfcca_enc=MFCCAEncoder,
|
|
chunk_conformer=ConformerChunkEncoder,
|
|
),
|
|
type_check=AbsEncoder,
|
|
default="rnn",
|
|
)
|
|
encoder_choices2 = ClassChoices(
|
|
"encoder2",
|
|
classes=dict(
|
|
conformer=ConformerEncoder,
|
|
transformer=TransformerEncoder,
|
|
rnn=RNNEncoder,
|
|
sanm=SANMEncoder,
|
|
sanm_chunk_opt=SANMEncoderChunkOpt,
|
|
),
|
|
type_check=AbsEncoder,
|
|
default="rnn",
|
|
)
|
|
asr_encoder_choices = ClassChoices(
|
|
"asr_encoder",
|
|
classes=dict(
|
|
conformer=ConformerEncoder,
|
|
transformer=TransformerEncoder,
|
|
rnn=RNNEncoder,
|
|
sanm=SANMEncoder,
|
|
sanm_chunk_opt=SANMEncoderChunkOpt,
|
|
data2vec_encoder=Data2VecEncoder,
|
|
mfcca_enc=MFCCAEncoder,
|
|
),
|
|
type_check=AbsEncoder,
|
|
default="rnn",
|
|
)
|
|
spk_encoder_choices = ClassChoices(
|
|
"spk_encoder",
|
|
classes=dict(
|
|
resnet34_diar=ResNet34Diar,
|
|
),
|
|
default="resnet34_diar",
|
|
)
|
|
postencoder_choices = ClassChoices(
|
|
name="postencoder",
|
|
classes=dict(
|
|
hugging_face_transformers=HuggingFaceTransformersPostEncoder,
|
|
),
|
|
type_check=AbsPostEncoder,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
decoder_choices = ClassChoices(
|
|
"decoder",
|
|
classes=dict(
|
|
transformer=TransformerDecoder,
|
|
lightweight_conv=LightweightConvolutionTransformerDecoder,
|
|
lightweight_conv2d=LightweightConvolution2DTransformerDecoder,
|
|
dynamic_conv=DynamicConvolutionTransformerDecoder,
|
|
dynamic_conv2d=DynamicConvolution2DTransformerDecoder,
|
|
rnn=RNNDecoder,
|
|
fsmn_scama_opt=FsmnDecoderSCAMAOpt,
|
|
paraformer_decoder_sanm=ParaformerSANMDecoder,
|
|
paraformer_decoder_san=ParaformerDecoderSAN,
|
|
contextual_paraformer_decoder=ContextualParaformerDecoder,
|
|
sa_decoder=SAAsrTransformerDecoder,
|
|
),
|
|
type_check=AbsDecoder,
|
|
default="rnn",
|
|
)
|
|
decoder_choices2 = ClassChoices(
|
|
"decoder2",
|
|
classes=dict(
|
|
transformer=TransformerDecoder,
|
|
lightweight_conv=LightweightConvolutionTransformerDecoder,
|
|
lightweight_conv2d=LightweightConvolution2DTransformerDecoder,
|
|
dynamic_conv=DynamicConvolutionTransformerDecoder,
|
|
dynamic_conv2d=DynamicConvolution2DTransformerDecoder,
|
|
rnn=RNNDecoder,
|
|
fsmn_scama_opt=FsmnDecoderSCAMAOpt,
|
|
paraformer_decoder_sanm=ParaformerSANMDecoder,
|
|
),
|
|
type_check=AbsDecoder,
|
|
default="rnn",
|
|
)
|
|
|
|
rnnt_decoder_choices = ClassChoices(
|
|
"rnnt_decoder",
|
|
classes=dict(
|
|
rnnt=RNNTDecoder,
|
|
),
|
|
type_check=RNNTDecoder,
|
|
default="rnnt",
|
|
)
|
|
|
|
joint_network_choices = ClassChoices(
|
|
name="joint_network",
|
|
classes=dict(
|
|
joint_network=JointNetwork,
|
|
),
|
|
default="joint_network",
|
|
optional=True,
|
|
)
|
|
|
|
predictor_choices = ClassChoices(
|
|
name="predictor",
|
|
classes=dict(
|
|
cif_predictor=CifPredictor,
|
|
ctc_predictor=None,
|
|
cif_predictor_v2=CifPredictorV2,
|
|
cif_predictor_v3=CifPredictorV3,
|
|
bat_predictor=BATPredictor,
|
|
),
|
|
type_check=None,
|
|
default="cif_predictor",
|
|
optional=True,
|
|
)
|
|
predictor_choices2 = ClassChoices(
|
|
name="predictor2",
|
|
classes=dict(
|
|
cif_predictor=CifPredictor,
|
|
ctc_predictor=None,
|
|
cif_predictor_v2=CifPredictorV2,
|
|
),
|
|
type_check=None,
|
|
default="cif_predictor",
|
|
optional=True,
|
|
)
|
|
stride_conv_choices = ClassChoices(
|
|
name="stride_conv",
|
|
classes=dict(
|
|
stride_conv1d=Conv1dSubsampling
|
|
),
|
|
type_check=None,
|
|
default="stride_conv1d",
|
|
optional=True,
|
|
) |