FunASR/funasr/bin/modelscope_infer.py
2022-12-29 13:04:40 +08:00

91 lines
3.0 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import logging
import os
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description="decoding configs",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument("--model_name",
type=str,
default="speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
help="model name in modelscope")
parser.add_argument("--model_revision",
type=str,
default="v1.0.4",
help="model revision in modelscope")
parser.add_argument("--local_model_path",
type=str,
default=None,
help="local model path, usually for fine-tuning")
parser.add_argument("--wav_list",
type=str,
help="input wav list")
parser.add_argument("--output_file",
type=str,
help="saving decoding results")
parser.add_argument(
"--njob",
type=int,
default=1,
help="The number of jobs for each gpu",
)
parser.add_argument(
"--gpuid_list",
type=str,
default="",
help="The visible gpus",
)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
args = parser.parse_args()
# set logging messages
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.info("Decoding args: {}".format(args))
# gpu setting
if args.ngpu > 0:
jobid = int(args.output_file.split(".")[-1])
gpuid = args.gpuid_list.split(",")[(jobid - 1) // args.njob]
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = gpuid
if args.local_model_path is None:
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model="damo/{}".format(args.model_name),
model_revision=args.model_revision)
else:
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model=args.local_model_path)
with open(args.wav_list, 'r') as f_wav:
wav_lines = f_wav.readlines()
with open(args.output_file, "w") as f_out:
for line in wav_lines:
wav_id, wav_path = line.strip().split()
logging.info("decoding, utt_id: ['{}']".format(wav_id))
rec_result = inference_pipeline(audio_in=wav_path)
if 'text' in rec_result:
text = rec_result["text"]
else:
text = ''
f_out.write(wav_id + " " + text + "\n")
logging.info("best hypo: {} \n".format(text))