mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
* update * update setup * update setup * update setup * update setup * update setup * update setup * update * update * update setup
101 lines
3.6 KiB
Python
101 lines
3.6 KiB
Python
#!/usr/bin/env python3
|
|
|
|
"""Initialize modules for espnet2 neural networks."""
|
|
|
|
import math
|
|
import torch
|
|
|
|
|
|
def initialize(model: torch.nn.Module, init: str):
|
|
"""Initialize weights of a neural network module.
|
|
|
|
Parameters are initialized using the given method or distribution.
|
|
|
|
Custom initialization routines can be implemented into submodules
|
|
as function `espnet_initialization_fn` within the custom module.
|
|
|
|
Args:
|
|
model: Target.
|
|
init: Method of initialization.
|
|
"""
|
|
|
|
if init == "chainer":
|
|
# 1. lecun_normal_init_parameters
|
|
for p in model.parameters():
|
|
data = p.data
|
|
if data.dim() == 1:
|
|
# bias
|
|
data.zero_()
|
|
elif data.dim() == 2:
|
|
# linear weight
|
|
n = data.size(1)
|
|
stdv = 1.0 / math.sqrt(n)
|
|
data.normal_(0, stdv)
|
|
elif data.dim() in (3, 4):
|
|
# conv weight
|
|
n = data.size(1)
|
|
for k in data.size()[2:]:
|
|
n *= k
|
|
stdv = 1.0 / math.sqrt(n)
|
|
data.normal_(0, stdv)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
for mod in model.modules():
|
|
# 2. embed weight ~ Normal(0, 1)
|
|
if isinstance(mod, torch.nn.Embedding):
|
|
mod.weight.data.normal_(0, 1)
|
|
# 3. forget-bias = 1.0
|
|
elif isinstance(mod, torch.nn.RNNCellBase):
|
|
n = mod.bias_ih.size(0)
|
|
mod.bias_ih.data[n // 4 : n // 2].fill_(1.0)
|
|
elif isinstance(mod, torch.nn.RNNBase):
|
|
for name, param in mod.named_parameters():
|
|
if "bias" in name:
|
|
n = param.size(0)
|
|
param.data[n // 4 : n // 2].fill_(1.0)
|
|
if hasattr(mod, "espnet_initialization_fn"):
|
|
mod.espnet_initialization_fn()
|
|
|
|
else:
|
|
# weight init
|
|
for p in model.parameters():
|
|
if p.dim() > 1:
|
|
if init == "xavier_uniform":
|
|
torch.nn.init.xavier_uniform_(p.data)
|
|
elif init == "xavier_normal":
|
|
torch.nn.init.xavier_normal_(p.data)
|
|
elif init == "kaiming_uniform":
|
|
torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu")
|
|
elif init == "kaiming_normal":
|
|
torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu")
|
|
else:
|
|
raise ValueError("Unknown initialization: " + init)
|
|
# bias init
|
|
for p in model.parameters():
|
|
if p.dim() == 1:
|
|
p.data.zero_()
|
|
|
|
# reset some modules with default init
|
|
for m in model.modules():
|
|
if isinstance(
|
|
m, (torch.nn.Embedding, torch.nn.LayerNorm, torch.nn.GroupNorm)
|
|
):
|
|
m.reset_parameters()
|
|
if hasattr(m, "espnet_initialization_fn"):
|
|
m.espnet_initialization_fn()
|
|
|
|
# TODO(xkc): Hacking s3prl_frontend and wav2vec2encoder initialization
|
|
if getattr(model, "encoder", None) and getattr(
|
|
model.encoder, "reload_pretrained_parameters", None
|
|
):
|
|
model.encoder.reload_pretrained_parameters()
|
|
if getattr(model, "frontend", None) and getattr(
|
|
model.frontend, "reload_pretrained_parameters", None
|
|
):
|
|
model.frontend.reload_pretrained_parameters()
|
|
if getattr(model, "postencoder", None) and getattr(
|
|
model.postencoder, "reload_pretrained_parameters", None
|
|
):
|
|
model.postencoder.reload_pretrained_parameters()
|