FunASR/funasr/runtime/python/onnxruntime/demo_paraformer_online.py
Yabin Li b454a1054f
update online runtime, including vad-online, paraformer-online, punc-online,2pass (#815)
* init

* update

* add LoadConfigFromYaml

* update

* update

* update

* del time stat

* update

* update

* update

* update

* update

* update

* update

* add cpp websocket online 2pass srv

* [feature] multithread grpc server

* update

* update

* update

* [feature] support 2pass grpc cpp server and python client, can change mode to use offline, online or 2pass decoding

* update

* update

* update

* update

* add paraformer online onnx model export

* add paraformer online onnx model export

* add paraformer online onnx model export

* add paraformer online onnxruntime

* add paraformer online onnxruntime

* add paraformer online onnxruntime

* fix export paraformer online onnx model bug

* for client closed earlier and core dump

* support GRPC two pass decoding (#813)

* [refator] optimize grpc server pipeline and instruction

* [refator] rm useless file

* [refator] optimize grpc client pipeline and instruction

* [debug] hanlde coredump when client ternimated

* [refator] rm useless log

* [refator] modify grpc cmake

* Create run_server_2pass.sh

* Update SDK_tutorial_online_zh.md

* Update SDK_tutorial_online.md

* Update SDK_advanced_guide_online.md

* Update SDK_advanced_guide_online_zh.md

* Update SDK_tutorial_online_zh.md

* Update SDK_tutorial_online.md

* update

---------

Co-authored-by: zhaoming <zhaomingwork@qq.com>
Co-authored-by: boji123 <boji123@aliyun.com>
Co-authored-by: haoneng.lhn <haoneng.lhn@alibaba-inc.com>
2023-08-08 11:17:43 +08:00

31 lines
1.2 KiB
Python

import soundfile
from funasr_onnx.paraformer_online_bin import Paraformer
from pathlib import Path
model_dir = "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online"
wav_path = '{}/.cache/modelscope/hub/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online/example/asr_example.wav'.format(Path.home())
chunk_size = [5, 10, 5]
model = Paraformer(model_dir, batch_size=1, quantize=True, chunk_size=chunk_size, intra_op_num_threads=4) # only support batch_size = 1
##online asr
speech, sample_rate = soundfile.read(wav_path)
speech_length = speech.shape[0]
sample_offset = 0
step = chunk_size[1] * 960
param_dict = {'cache': dict()}
final_result = ""
for sample_offset in range(0, speech_length, min(step, speech_length - sample_offset)):
if sample_offset + step >= speech_length - 1:
step = speech_length - sample_offset
is_final = True
else:
is_final = False
param_dict['is_final'] = is_final
rec_result = model(audio_in=speech[sample_offset: sample_offset + step],
param_dict=param_dict)
if len(rec_result) > 0:
final_result += rec_result[0]["preds"][0]
print(rec_result)
print(final_result)