mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
495 lines
16 KiB
Python
495 lines
16 KiB
Python
"""ASR Transducer Task."""
|
|
|
|
import argparse
|
|
import logging
|
|
from typing import Callable, Collection, Dict, List, Optional, Tuple
|
|
|
|
import numpy as np
|
|
import torch
|
|
from typeguard import check_argument_types, check_return_type
|
|
|
|
from funasr.models.frontend.abs_frontend import AbsFrontend
|
|
from funasr.models.frontend.default import DefaultFrontend
|
|
from funasr.models.frontend.windowing import SlidingWindow
|
|
from funasr.models.specaug.abs_specaug import AbsSpecAug
|
|
from funasr.models.specaug.specaug import SpecAug
|
|
from funasr.models.decoder.abs_decoder import AbsDecoder as AbsAttDecoder
|
|
from funasr.models.decoder.transformer_decoder import (
|
|
DynamicConvolution2DTransformerDecoder,
|
|
DynamicConvolutionTransformerDecoder,
|
|
LightweightConvolution2DTransformerDecoder,
|
|
LightweightConvolutionTransformerDecoder,
|
|
TransformerDecoder,
|
|
)
|
|
from funasr.models_transducer.decoder.abs_decoder import AbsDecoder
|
|
from funasr.models_transducer.decoder.rnn_decoder import RNNDecoder
|
|
from funasr.models_transducer.decoder.stateless_decoder import StatelessDecoder
|
|
from funasr.models_transducer.encoder.encoder import Encoder
|
|
from funasr.models_transducer.encoder.sanm_encoder import SANMEncoderChunkOpt
|
|
from funasr.models_transducer.espnet_transducer_model import ESPnetASRTransducerModel
|
|
from funasr.models_transducer.espnet_transducer_model_unified import ESPnetASRUnifiedTransducerModel
|
|
from funasr.models_transducer.espnet_transducer_model_uni_asr import UniASRTransducerModel
|
|
from funasr.models_transducer.joint_network import JointNetwork
|
|
from funasr.layers.abs_normalize import AbsNormalize
|
|
from funasr.layers.global_mvn import GlobalMVN
|
|
from funasr.layers.utterance_mvn import UtteranceMVN
|
|
from funasr.tasks.abs_task import AbsTask
|
|
from funasr.text.phoneme_tokenizer import g2p_choices
|
|
from funasr.train.class_choices import ClassChoices
|
|
from funasr.datasets.collate_fn import CommonCollateFn
|
|
from funasr.datasets.preprocessor import CommonPreprocessor
|
|
from funasr.train.trainer import Trainer
|
|
from funasr.utils.get_default_kwargs import get_default_kwargs
|
|
from funasr.utils.nested_dict_action import NestedDictAction
|
|
from funasr.utils.types import float_or_none, int_or_none, str2bool, str_or_none
|
|
|
|
frontend_choices = ClassChoices(
|
|
name="frontend",
|
|
classes=dict(
|
|
default=DefaultFrontend,
|
|
sliding_window=SlidingWindow,
|
|
),
|
|
type_check=AbsFrontend,
|
|
default="default",
|
|
)
|
|
specaug_choices = ClassChoices(
|
|
"specaug",
|
|
classes=dict(
|
|
specaug=SpecAug,
|
|
),
|
|
type_check=AbsSpecAug,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
normalize_choices = ClassChoices(
|
|
"normalize",
|
|
classes=dict(
|
|
global_mvn=GlobalMVN,
|
|
utterance_mvn=UtteranceMVN,
|
|
),
|
|
type_check=AbsNormalize,
|
|
default="utterance_mvn",
|
|
optional=True,
|
|
)
|
|
encoder_choices = ClassChoices(
|
|
"encoder",
|
|
classes=dict(
|
|
encoder=Encoder,
|
|
sanm_chunk_opt=SANMEncoderChunkOpt,
|
|
),
|
|
default="encoder",
|
|
)
|
|
|
|
decoder_choices = ClassChoices(
|
|
"decoder",
|
|
classes=dict(
|
|
rnn=RNNDecoder,
|
|
stateless=StatelessDecoder,
|
|
),
|
|
type_check=AbsDecoder,
|
|
default="rnn",
|
|
)
|
|
|
|
att_decoder_choices = ClassChoices(
|
|
"att_decoder",
|
|
classes=dict(
|
|
transformer=TransformerDecoder,
|
|
lightweight_conv=LightweightConvolutionTransformerDecoder,
|
|
lightweight_conv2d=LightweightConvolution2DTransformerDecoder,
|
|
dynamic_conv=DynamicConvolutionTransformerDecoder,
|
|
dynamic_conv2d=DynamicConvolution2DTransformerDecoder,
|
|
),
|
|
type_check=AbsAttDecoder,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
class ASRTransducerTask(AbsTask):
|
|
"""ASR Transducer Task definition."""
|
|
|
|
num_optimizers: int = 1
|
|
|
|
class_choices_list = [
|
|
frontend_choices,
|
|
specaug_choices,
|
|
normalize_choices,
|
|
encoder_choices,
|
|
decoder_choices,
|
|
att_decoder_choices,
|
|
]
|
|
|
|
trainer = Trainer
|
|
|
|
@classmethod
|
|
def add_task_arguments(cls, parser: argparse.ArgumentParser):
|
|
"""Add Transducer task arguments.
|
|
Args:
|
|
cls: ASRTransducerTask object.
|
|
parser: Transducer arguments parser.
|
|
"""
|
|
group = parser.add_argument_group(description="Task related.")
|
|
|
|
# required = parser.get_default("required")
|
|
# required += ["token_list"]
|
|
|
|
group.add_argument(
|
|
"--token_list",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="Integer-string mapper for tokens.",
|
|
)
|
|
group.add_argument(
|
|
"--split_with_space",
|
|
type=str2bool,
|
|
default=True,
|
|
help="whether to split text using <space>",
|
|
)
|
|
group.add_argument(
|
|
"--input_size",
|
|
type=int_or_none,
|
|
default=None,
|
|
help="The number of dimensions for input features.",
|
|
)
|
|
group.add_argument(
|
|
"--init",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="Type of model initialization to use.",
|
|
)
|
|
group.add_argument(
|
|
"--model_conf",
|
|
action=NestedDictAction,
|
|
default=get_default_kwargs(ESPnetASRTransducerModel),
|
|
help="The keyword arguments for the model class.",
|
|
)
|
|
# group.add_argument(
|
|
# "--encoder_conf",
|
|
# action=NestedDictAction,
|
|
# default={},
|
|
# help="The keyword arguments for the encoder class.",
|
|
# )
|
|
group.add_argument(
|
|
"--joint_network_conf",
|
|
action=NestedDictAction,
|
|
default={},
|
|
help="The keyword arguments for the joint network class.",
|
|
)
|
|
group = parser.add_argument_group(description="Preprocess related.")
|
|
group.add_argument(
|
|
"--use_preprocessor",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Whether to apply preprocessing to input data.",
|
|
)
|
|
group.add_argument(
|
|
"--token_type",
|
|
type=str,
|
|
default="bpe",
|
|
choices=["bpe", "char", "word", "phn"],
|
|
help="The type of tokens to use during tokenization.",
|
|
)
|
|
group.add_argument(
|
|
"--bpemodel",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="The path of the sentencepiece model.",
|
|
)
|
|
parser.add_argument(
|
|
"--non_linguistic_symbols",
|
|
type=str_or_none,
|
|
help="The 'non_linguistic_symbols' file path.",
|
|
)
|
|
parser.add_argument(
|
|
"--cleaner",
|
|
type=str_or_none,
|
|
choices=[None, "tacotron", "jaconv", "vietnamese"],
|
|
default=None,
|
|
help="Text cleaner to use.",
|
|
)
|
|
parser.add_argument(
|
|
"--g2p",
|
|
type=str_or_none,
|
|
choices=g2p_choices,
|
|
default=None,
|
|
help="g2p method to use if --token_type=phn.",
|
|
)
|
|
parser.add_argument(
|
|
"--speech_volume_normalize",
|
|
type=float_or_none,
|
|
default=None,
|
|
help="Normalization value for maximum amplitude scaling.",
|
|
)
|
|
parser.add_argument(
|
|
"--rir_scp",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="The RIR SCP file path.",
|
|
)
|
|
parser.add_argument(
|
|
"--rir_apply_prob",
|
|
type=float,
|
|
default=1.0,
|
|
help="The probability of the applied RIR convolution.",
|
|
)
|
|
parser.add_argument(
|
|
"--noise_scp",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="The path of noise SCP file.",
|
|
)
|
|
parser.add_argument(
|
|
"--noise_apply_prob",
|
|
type=float,
|
|
default=1.0,
|
|
help="The probability of the applied noise addition.",
|
|
)
|
|
parser.add_argument(
|
|
"--noise_db_range",
|
|
type=str,
|
|
default="13_15",
|
|
help="The range of the noise decibel level.",
|
|
)
|
|
for class_choices in cls.class_choices_list:
|
|
# Append --<name> and --<name>_conf.
|
|
# e.g. --decoder and --decoder_conf
|
|
class_choices.add_arguments(group)
|
|
|
|
@classmethod
|
|
def build_collate_fn(
|
|
cls, args: argparse.Namespace, train: bool
|
|
) -> Callable[
|
|
[Collection[Tuple[str, Dict[str, np.ndarray]]]],
|
|
Tuple[List[str], Dict[str, torch.Tensor]],
|
|
]:
|
|
"""Build collate function.
|
|
Args:
|
|
cls: ASRTransducerTask object.
|
|
args: Task arguments.
|
|
train: Training mode.
|
|
Return:
|
|
: Callable collate function.
|
|
"""
|
|
assert check_argument_types()
|
|
|
|
return CommonCollateFn(float_pad_value=0.0, int_pad_value=-1)
|
|
|
|
@classmethod
|
|
def build_preprocess_fn(
|
|
cls, args: argparse.Namespace, train: bool
|
|
) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]:
|
|
"""Build pre-processing function.
|
|
Args:
|
|
cls: ASRTransducerTask object.
|
|
args: Task arguments.
|
|
train: Training mode.
|
|
Return:
|
|
: Callable pre-processing function.
|
|
"""
|
|
assert check_argument_types()
|
|
|
|
if args.use_preprocessor:
|
|
retval = CommonPreprocessor(
|
|
train=train,
|
|
token_type=args.token_type,
|
|
token_list=args.token_list,
|
|
bpemodel=args.bpemodel,
|
|
non_linguistic_symbols=args.non_linguistic_symbols,
|
|
text_cleaner=args.cleaner,
|
|
g2p_type=args.g2p,
|
|
split_with_space=args.split_with_space if hasattr(args, "split_with_space") else False,
|
|
rir_scp=args.rir_scp if hasattr(args, "rir_scp") else None,
|
|
rir_apply_prob=args.rir_apply_prob
|
|
if hasattr(args, "rir_apply_prob")
|
|
else 1.0,
|
|
noise_scp=args.noise_scp if hasattr(args, "noise_scp") else None,
|
|
noise_apply_prob=args.noise_apply_prob
|
|
if hasattr(args, "noise_apply_prob")
|
|
else 1.0,
|
|
noise_db_range=args.noise_db_range
|
|
if hasattr(args, "noise_db_range")
|
|
else "13_15",
|
|
speech_volume_normalize=args.speech_volume_normalize
|
|
if hasattr(args, "rir_scp")
|
|
else None,
|
|
)
|
|
else:
|
|
retval = None
|
|
|
|
assert check_return_type(retval)
|
|
return retval
|
|
|
|
@classmethod
|
|
def required_data_names(
|
|
cls, train: bool = True, inference: bool = False
|
|
) -> Tuple[str, ...]:
|
|
"""Required data depending on task mode.
|
|
Args:
|
|
cls: ASRTransducerTask object.
|
|
train: Training mode.
|
|
inference: Inference mode.
|
|
Return:
|
|
retval: Required task data.
|
|
"""
|
|
if not inference:
|
|
retval = ("speech", "text")
|
|
else:
|
|
retval = ("speech",)
|
|
|
|
return retval
|
|
|
|
@classmethod
|
|
def optional_data_names(
|
|
cls, train: bool = True, inference: bool = False
|
|
) -> Tuple[str, ...]:
|
|
"""Optional data depending on task mode.
|
|
Args:
|
|
cls: ASRTransducerTask object.
|
|
train: Training mode.
|
|
inference: Inference mode.
|
|
Return:
|
|
retval: Optional task data.
|
|
"""
|
|
retval = ()
|
|
assert check_return_type(retval)
|
|
|
|
return retval
|
|
|
|
@classmethod
|
|
def build_model(cls, args: argparse.Namespace) -> ESPnetASRTransducerModel:
|
|
"""Required data depending on task mode.
|
|
Args:
|
|
cls: ASRTransducerTask object.
|
|
args: Task arguments.
|
|
Return:
|
|
model: ASR Transducer model.
|
|
"""
|
|
assert check_argument_types()
|
|
|
|
if isinstance(args.token_list, str):
|
|
with open(args.token_list, encoding="utf-8") as f:
|
|
token_list = [line.rstrip() for line in f]
|
|
|
|
# Overwriting token_list to keep it as "portable".
|
|
args.token_list = list(token_list)
|
|
elif isinstance(args.token_list, (tuple, list)):
|
|
token_list = list(args.token_list)
|
|
else:
|
|
raise RuntimeError("token_list must be str or list")
|
|
vocab_size = len(token_list)
|
|
logging.info(f"Vocabulary size: {vocab_size }")
|
|
|
|
# 1. frontend
|
|
if args.input_size is None:
|
|
# Extract features in the model
|
|
frontend_class = frontend_choices.get_class(args.frontend)
|
|
frontend = frontend_class(**args.frontend_conf)
|
|
input_size = frontend.output_size()
|
|
else:
|
|
# Give features from data-loader
|
|
frontend = None
|
|
input_size = args.input_size
|
|
|
|
# 2. Data augmentation for spectrogram
|
|
if args.specaug is not None:
|
|
specaug_class = specaug_choices.get_class(args.specaug)
|
|
specaug = specaug_class(**args.specaug_conf)
|
|
else:
|
|
specaug = None
|
|
|
|
# 3. Normalization layer
|
|
if args.normalize is not None:
|
|
normalize_class = normalize_choices.get_class(args.normalize)
|
|
normalize = normalize_class(**args.normalize_conf)
|
|
else:
|
|
normalize = None
|
|
|
|
# 4. Encoder
|
|
|
|
if getattr(args, "encoder", None) is not None:
|
|
encoder_class = encoder_choices.get_class(args.encoder)
|
|
encoder = encoder_class(input_size, **args.encoder_conf)
|
|
else:
|
|
encoder = Encoder(input_size, **args.encoder_conf)
|
|
encoder_output_size = encoder.output_size
|
|
|
|
# 5. Decoder
|
|
decoder_class = decoder_choices.get_class(args.decoder)
|
|
decoder = decoder_class(
|
|
vocab_size,
|
|
**args.decoder_conf,
|
|
)
|
|
decoder_output_size = decoder.output_size
|
|
|
|
if getattr(args, "att_decoder", None) is not None:
|
|
att_decoder_class = att_decoder_choices.get_class(args.att_decoder)
|
|
|
|
att_decoder = att_decoder_class(
|
|
vocab_size=vocab_size,
|
|
encoder_output_size=encoder_output_size,
|
|
**args.att_decoder_conf,
|
|
)
|
|
else:
|
|
att_decoder = None
|
|
|
|
# 6. Joint Network
|
|
joint_network = JointNetwork(
|
|
vocab_size,
|
|
encoder_output_size,
|
|
decoder_output_size,
|
|
**args.joint_network_conf,
|
|
)
|
|
|
|
# 7. Build model
|
|
|
|
if getattr(args, "encoder", None) is not None and args.encoder == 'sanm_chunk_opt':
|
|
model = UniASRTransducerModel(
|
|
vocab_size=vocab_size,
|
|
token_list=token_list,
|
|
frontend=frontend,
|
|
specaug=specaug,
|
|
normalize=normalize,
|
|
encoder=encoder,
|
|
decoder=decoder,
|
|
att_decoder=att_decoder,
|
|
joint_network=joint_network,
|
|
**args.model_conf,
|
|
)
|
|
|
|
elif encoder.unified_model_training:
|
|
model = ESPnetASRUnifiedTransducerModel(
|
|
vocab_size=vocab_size,
|
|
token_list=token_list,
|
|
frontend=frontend,
|
|
specaug=specaug,
|
|
normalize=normalize,
|
|
encoder=encoder,
|
|
decoder=decoder,
|
|
att_decoder=att_decoder,
|
|
joint_network=joint_network,
|
|
**args.model_conf,
|
|
)
|
|
|
|
else:
|
|
model = ESPnetASRTransducerModel(
|
|
vocab_size=vocab_size,
|
|
token_list=token_list,
|
|
frontend=frontend,
|
|
specaug=specaug,
|
|
normalize=normalize,
|
|
encoder=encoder,
|
|
decoder=decoder,
|
|
att_decoder=att_decoder,
|
|
joint_network=joint_network,
|
|
**args.model_conf,
|
|
)
|
|
|
|
# 8. Initialize model
|
|
if args.init is not None:
|
|
raise NotImplementedError(
|
|
"Currently not supported.",
|
|
"Initialization part will be reworked in a short future.",
|
|
)
|
|
|
|
#assert check_return_type(model)
|
|
|
|
return model
|