FunASR/runtime/python/onnxruntime/funasr_onnx/paraformer_bin.py
2024-01-10 11:21:03 +08:00

392 lines
17 KiB
Python

# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import os.path
from pathlib import Path
from typing import List, Union, Tuple
import copy
import librosa
import numpy as np
from .utils.utils import (CharTokenizer, Hypothesis, ONNXRuntimeError,
OrtInferSession, TokenIDConverter, get_logger,
read_yaml)
from .utils.postprocess_utils import (sentence_postprocess,
sentence_postprocess_sentencepiece)
from .utils.frontend import WavFrontend
from .utils.timestamp_utils import time_stamp_lfr6_onnx
from .utils.utils import pad_list
logging = get_logger()
class Paraformer():
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
https://arxiv.org/abs/2206.08317
"""
def __init__(self, model_dir: Union[str, Path] = None,
batch_size: int = 1,
device_id: Union[str, int] = "-1",
plot_timestamp_to: str = "",
quantize: bool = False,
intra_op_num_threads: int = 4,
cache_dir: str = None
):
if not Path(model_dir).exists():
try:
from modelscope.hub.snapshot_download import snapshot_download
except:
raise "You are exporting model from modelscope, please install modelscope and try it again. To install modelscope, you could:\n" \
"\npip3 install -U modelscope\n" \
"For the users in China, you could install with the command:\n" \
"\npip3 install -U modelscope -i https://mirror.sjtu.edu.cn/pypi/web/simple"
try:
model_dir = snapshot_download(model_dir, cache_dir=cache_dir)
except:
raise "model_dir must be model_name in modelscope or local path downloaded from modelscope, but is {}".format(model_dir)
model_file = os.path.join(model_dir, 'model.onnx')
if quantize:
model_file = os.path.join(model_dir, 'model_quant.onnx')
if not os.path.exists(model_file):
print(".onnx is not exist, begin to export onnx")
try:
from funasr.export.export_model import ModelExport
except:
raise "You are exporting onnx, please install funasr and try it again. To install funasr, you could:\n" \
"\npip3 install -U funasr\n" \
"For the users in China, you could install with the command:\n" \
"\npip3 install -U funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple"
export_model = ModelExport(
cache_dir=cache_dir,
onnx=True,
device="cpu",
quant=quantize,
)
export_model.export(model_dir)
config_file = os.path.join(model_dir, 'config.yaml')
cmvn_file = os.path.join(model_dir, 'am.mvn')
config = read_yaml(config_file)
self.converter = TokenIDConverter(config['token_list'])
self.tokenizer = CharTokenizer()
self.frontend = WavFrontend(
cmvn_file=cmvn_file,
**config['frontend_conf']
)
self.ort_infer = OrtInferSession(model_file, device_id, intra_op_num_threads=intra_op_num_threads)
self.batch_size = batch_size
self.plot_timestamp_to = plot_timestamp_to
if "predictor_bias" in config['model_conf'].keys():
self.pred_bias = config['model_conf']['predictor_bias']
else:
self.pred_bias = 0
if "lang" in config:
self.language = config['lang']
else:
self.language = None
def __call__(self, wav_content: Union[str, np.ndarray, List[str]], **kwargs) -> List:
waveform_list = self.load_data(wav_content, self.frontend.opts.frame_opts.samp_freq)
waveform_nums = len(waveform_list)
asr_res = []
for beg_idx in range(0, waveform_nums, self.batch_size):
end_idx = min(waveform_nums, beg_idx + self.batch_size)
feats, feats_len = self.extract_feat(waveform_list[beg_idx:end_idx])
try:
outputs = self.infer(feats, feats_len)
am_scores, valid_token_lens = outputs[0], outputs[1]
if len(outputs) == 4:
# for BiCifParaformer Inference
us_alphas, us_peaks = outputs[2], outputs[3]
else:
us_alphas, us_peaks = None, None
except ONNXRuntimeError:
#logging.warning(traceback.format_exc())
logging.warning("input wav is silence or noise")
preds = ['']
else:
preds = self.decode(am_scores, valid_token_lens)
if us_peaks is None:
for pred in preds:
if self.language == "en-bpe":
pred = sentence_postprocess_sentencepiece(pred)
else:
pred = sentence_postprocess(pred)
asr_res.append({'preds': pred})
else:
for pred, us_peaks_ in zip(preds, us_peaks):
raw_tokens = pred
timestamp, timestamp_raw = time_stamp_lfr6_onnx(us_peaks_, copy.copy(raw_tokens))
text_proc, timestamp_proc, _ = sentence_postprocess(raw_tokens, timestamp_raw)
# logging.warning(timestamp)
if len(self.plot_timestamp_to):
self.plot_wave_timestamp(waveform_list[0], timestamp, self.plot_timestamp_to)
asr_res.append({'preds': text_proc, 'timestamp': timestamp_proc, "raw_tokens": raw_tokens})
return asr_res
def plot_wave_timestamp(self, wav, text_timestamp, dest):
# TODO: Plot the wav and timestamp results with matplotlib
import matplotlib
matplotlib.use('Agg')
matplotlib.rc("font", family='Alibaba PuHuiTi') # set it to a font that your system supports
import matplotlib.pyplot as plt
fig, ax1 = plt.subplots(figsize=(11, 3.5), dpi=320)
ax2 = ax1.twinx()
ax2.set_ylim([0, 2.0])
# plot waveform
ax1.set_ylim([-0.3, 0.3])
time = np.arange(wav.shape[0]) / 16000
ax1.plot(time, wav/wav.max()*0.3, color='gray', alpha=0.4)
# plot lines and text
for (char, start, end) in text_timestamp:
ax1.vlines(start, -0.3, 0.3, ls='--')
ax1.vlines(end, -0.3, 0.3, ls='--')
x_adj = 0.045 if char != '<sil>' else 0.12
ax1.text((start + end) * 0.5 - x_adj, 0, char)
# plt.legend()
plotname = "{}/timestamp.png".format(dest)
plt.savefig(plotname, bbox_inches='tight')
def load_data(self,
wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List:
def load_wav(path: str) -> np.ndarray:
waveform, _ = librosa.load(path, sr=fs)
return waveform
if isinstance(wav_content, np.ndarray):
return [wav_content]
if isinstance(wav_content, str):
return [load_wav(wav_content)]
if isinstance(wav_content, list):
return [load_wav(path) for path in wav_content]
raise TypeError(
f'The type of {wav_content} is not in [str, np.ndarray, list]')
def extract_feat(self,
waveform_list: List[np.ndarray]
) -> Tuple[np.ndarray, np.ndarray]:
feats, feats_len = [], []
for waveform in waveform_list:
speech, _ = self.frontend.fbank(waveform)
feat, feat_len = self.frontend.lfr_cmvn(speech)
feats.append(feat)
feats_len.append(feat_len)
feats = self.pad_feats(feats, np.max(feats_len))
feats_len = np.array(feats_len).astype(np.int32)
return feats, feats_len
@staticmethod
def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray:
def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray:
pad_width = ((0, max_feat_len - cur_len), (0, 0))
return np.pad(feat, pad_width, 'constant', constant_values=0)
feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats]
feats = np.array(feat_res).astype(np.float32)
return feats
def infer(self, feats: np.ndarray,
feats_len: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
outputs = self.ort_infer([feats, feats_len])
return outputs
def decode(self, am_scores: np.ndarray, token_nums: int) -> List[str]:
return [self.decode_one(am_score, token_num)
for am_score, token_num in zip(am_scores, token_nums)]
def decode_one(self,
am_score: np.ndarray,
valid_token_num: int) -> List[str]:
yseq = am_score.argmax(axis=-1)
score = am_score.max(axis=-1)
score = np.sum(score, axis=-1)
# pad with mask tokens to ensure compatibility with sos/eos tokens
# asr_model.sos:1 asr_model.eos:2
yseq = np.array([1] + yseq.tolist() + [2])
hyp = Hypothesis(yseq=yseq, score=score)
# remove sos/eos and get results
last_pos = -1
token_int = hyp.yseq[1:last_pos].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(filter(lambda x: x not in (0, 2), token_int))
# Change integer-ids to tokens
token = self.converter.ids2tokens(token_int)
token = token[:valid_token_num-self.pred_bias]
# texts = sentence_postprocess(token)
return token
class ContextualParaformer(Paraformer):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
https://arxiv.org/abs/2206.08317
"""
def __init__(self, model_dir: Union[str, Path] = None,
batch_size: int = 1,
device_id: Union[str, int] = "-1",
plot_timestamp_to: str = "",
quantize: bool = False,
intra_op_num_threads: int = 4,
cache_dir: str = None
):
if not Path(model_dir).exists():
try:
from modelscope.hub.snapshot_download import snapshot_download
except:
raise "You are exporting model from modelscope, please install modelscope and try it again. To install modelscope, you could:\n" \
"\npip3 install -U modelscope\n" \
"For the users in China, you could install with the command:\n" \
"\npip3 install -U modelscope -i https://mirror.sjtu.edu.cn/pypi/web/simple"
try:
model_dir = snapshot_download(model_dir, cache_dir=cache_dir)
except:
raise "model_dir must be model_name in modelscope or local path downloaded from modelscope, but is {}".format(model_dir)
if quantize:
model_bb_file = os.path.join(model_dir, 'model_quant.onnx')
model_eb_file = os.path.join(model_dir, 'model_eb_quant.onnx')
else:
model_bb_file = os.path.join(model_dir, 'model.onnx')
model_eb_file = os.path.join(model_dir, 'model_eb.onnx')
token_list_file = os.path.join(model_dir, 'tokens.txt')
self.vocab = {}
with open(Path(token_list_file), 'r') as fin:
for i, line in enumerate(fin.readlines()):
self.vocab[line.strip()] = i
#if quantize:
# model_file = os.path.join(model_dir, 'model_quant.onnx')
#if not os.path.exists(model_file):
# logging.error(".onnx model not exist, please export first.")
config_file = os.path.join(model_dir, 'config.yaml')
cmvn_file = os.path.join(model_dir, 'am.mvn')
config = read_yaml(config_file)
self.converter = TokenIDConverter(config['token_list'])
self.tokenizer = CharTokenizer()
self.frontend = WavFrontend(
cmvn_file=cmvn_file,
**config['frontend_conf']
)
self.ort_infer_bb = OrtInferSession(model_bb_file, device_id, intra_op_num_threads=intra_op_num_threads)
self.ort_infer_eb = OrtInferSession(model_eb_file, device_id, intra_op_num_threads=intra_op_num_threads)
self.batch_size = batch_size
self.plot_timestamp_to = plot_timestamp_to
if "predictor_bias" in config['model_conf'].keys():
self.pred_bias = config['model_conf']['predictor_bias']
else:
self.pred_bias = 0
def __call__(self,
wav_content: Union[str, np.ndarray, List[str]],
hotwords: str,
**kwargs) -> List:
# make hotword list
hotwords, hotwords_length = self.proc_hotword(hotwords)
# import pdb; pdb.set_trace()
[bias_embed] = self.eb_infer(hotwords, hotwords_length)
# index from bias_embed
bias_embed = bias_embed.transpose(1, 0, 2)
_ind = np.arange(0, len(hotwords)).tolist()
bias_embed = bias_embed[_ind, hotwords_length.tolist()]
waveform_list = self.load_data(wav_content, self.frontend.opts.frame_opts.samp_freq)
waveform_nums = len(waveform_list)
asr_res = []
for beg_idx in range(0, waveform_nums, self.batch_size):
end_idx = min(waveform_nums, beg_idx + self.batch_size)
feats, feats_len = self.extract_feat(waveform_list[beg_idx:end_idx])
bias_embed = np.expand_dims(bias_embed, axis=0)
bias_embed = np.repeat(bias_embed, feats.shape[0], axis=0)
try:
outputs = self.bb_infer(feats, feats_len, bias_embed)
am_scores, valid_token_lens = outputs[0], outputs[1]
except ONNXRuntimeError:
#logging.warning(traceback.format_exc())
logging.warning("input wav is silence or noise")
preds = ['']
else:
preds = self.decode(am_scores, valid_token_lens)
for pred in preds:
pred = sentence_postprocess(pred)
asr_res.append({'preds': pred})
return asr_res
def proc_hotword(self, hotwords):
hotwords = hotwords.split(" ")
hotwords_length = [len(i) - 1 for i in hotwords]
hotwords_length.append(0)
hotwords_length = np.array(hotwords_length)
# hotwords.append('<s>')
def word_map(word):
hotwords = []
for c in word:
if c not in self.vocab.keys():
hotwords.append(8403)
logging.warning("oov character {} found in hotword {}, replaced by <unk>".format(c, word))
else:
hotwords.append(self.vocab[c])
return np.array(hotwords)
hotword_int = [word_map(i) for i in hotwords]
# import pdb; pdb.set_trace()
hotword_int.append(np.array([1]))
hotwords = pad_list(hotword_int, pad_value=0, max_len=10)
# import pdb; pdb.set_trace()
return hotwords, hotwords_length
def bb_infer(self, feats: np.ndarray,
feats_len: np.ndarray, bias_embed) -> Tuple[np.ndarray, np.ndarray]:
outputs = self.ort_infer_bb([feats, feats_len, bias_embed])
return outputs
def eb_infer(self, hotwords, hotwords_length):
outputs = self.ort_infer_eb([hotwords.astype(np.int32), hotwords_length.astype(np.int32)])
return outputs
def decode(self, am_scores: np.ndarray, token_nums: int) -> List[str]:
return [self.decode_one(am_score, token_num)
for am_score, token_num in zip(am_scores, token_nums)]
def decode_one(self,
am_score: np.ndarray,
valid_token_num: int) -> List[str]:
yseq = am_score.argmax(axis=-1)
score = am_score.max(axis=-1)
score = np.sum(score, axis=-1)
# pad with mask tokens to ensure compatibility with sos/eos tokens
# asr_model.sos:1 asr_model.eos:2
yseq = np.array([1] + yseq.tolist() + [2])
hyp = Hypothesis(yseq=yseq, score=score)
# remove sos/eos and get results
last_pos = -1
token_int = hyp.yseq[1:last_pos].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(filter(lambda x: x not in (0, 2), token_int))
# Change integer-ids to tokens
token = self.converter.ids2tokens(token_int)
token = token[:valid_token_num-self.pred_bias]
# texts = sentence_postprocess(token)
return token