mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
117 lines
4.3 KiB
C#
117 lines
4.3 KiB
C#
using AliParaformerAsr;
|
||
using CommandLine;
|
||
using NAudio.Wave;
|
||
|
||
internal static class Program
|
||
{
|
||
|
||
public class ProgramParams
|
||
{
|
||
[Option('i', "input", Required = true, HelpText = "Input wav file/folder path.")]
|
||
public string WavFilePath { get; set; }
|
||
|
||
[Option('m', "model", Default = "speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-onnx", HelpText = "Model path.")]
|
||
public string Model { get; set; }
|
||
}
|
||
|
||
[STAThread]
|
||
private static void Main(string[] args)
|
||
{
|
||
var argParams = Parser.Default.ParseArguments<ProgramParams>(args).Value;
|
||
|
||
string modelPath = argParams.Model;
|
||
if (!Directory.Exists(argParams.Model))
|
||
{
|
||
modelPath = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, modelPath);
|
||
if (!Directory.Exists(modelPath))
|
||
{
|
||
throw new DirectoryNotFoundException($"Model not found: {argParams.Model}");
|
||
}
|
||
}
|
||
|
||
string modelFilePath = Path.Combine(modelPath, "model_quant.onnx");
|
||
string configFilePath = Path.Combine(modelPath, "asr.yaml");
|
||
string mvnFilePath = Path.Combine(modelPath, "am.mvn");
|
||
string tokensFilePath = Path.Combine(modelPath, "tokens.json");
|
||
|
||
|
||
var offlineRecognizer = new OfflineRecognizer(modelFilePath, configFilePath, mvnFilePath, tokensFilePath, OnnxRumtimeTypes.CPU);
|
||
|
||
List<float[]> samples = new List<float[]>();
|
||
TimeSpan total_duration = new TimeSpan(0L);
|
||
|
||
if (File.Exists(argParams.WavFilePath))
|
||
{
|
||
(var sample, var duration) = LoadWavFile(argParams.WavFilePath);
|
||
|
||
samples.Add(sample);
|
||
total_duration += duration;
|
||
}
|
||
else if (Directory.Exists(argParams.WavFilePath))
|
||
{
|
||
var findWavCount = 0;
|
||
|
||
foreach (var wavFilePath in Directory.EnumerateFiles(argParams.WavFilePath, "*.wav"))
|
||
{
|
||
(var sample, var duration) = LoadWavFile(wavFilePath);
|
||
|
||
samples.Add(sample);
|
||
total_duration += duration;
|
||
findWavCount++;
|
||
}
|
||
|
||
Console.WriteLine($"Total WAV files found: {findWavCount} duration:{total_duration}");
|
||
}
|
||
else
|
||
{
|
||
throw new Exception($"Invalid wav input path. {argParams.WavFilePath}");
|
||
}
|
||
|
||
var start_time = DateTime.Now;
|
||
|
||
int batchSize = 1; // 输入参数支持批处理,但是实际效果提升有限,感觉还是负优化,等GPU版本优化后再试
|
||
for (int i = 0; i < samples.Count; i += batchSize)
|
||
{
|
||
List<float[]> temp_samples = samples.Skip(i).Take(batchSize).ToList();
|
||
|
||
List<string> results = offlineRecognizer.GetResults(temp_samples);
|
||
|
||
foreach (string result in results)
|
||
{
|
||
Console.WriteLine(result);
|
||
Console.WriteLine("");
|
||
}
|
||
}
|
||
|
||
|
||
var end_time = DateTime.Now;
|
||
|
||
double elapsed_milliseconds = (end_time - start_time).TotalMilliseconds;
|
||
double rtf = elapsed_milliseconds / total_duration.TotalMilliseconds;
|
||
|
||
Console.WriteLine("elapsed_milliseconds:{0}", elapsed_milliseconds.ToString());
|
||
Console.WriteLine("total_duration:{0}", total_duration.TotalMilliseconds.ToString());
|
||
|
||
// 实时因子是处理时间与音频时长的比值。
|
||
// 例如,如果一个 10 秒的音频片段需要 5 秒来处理,那么实时因子就是 0.5。
|
||
// 如果处理时间和音频时长相等,那么实时因子就是 1,这意味着系统以实时速度进行处理。
|
||
// 数值越小,表示处理速度越快。
|
||
// from chatgpt 解释
|
||
Console.WriteLine("Real-Time Factor :{0}", rtf.ToString());
|
||
Console.WriteLine("end!");
|
||
}
|
||
|
||
private static (float[] sample, TimeSpan duration) LoadWavFile(string wavFilePath)
|
||
{
|
||
AudioFileReader _audioFileReader = new AudioFileReader(wavFilePath);
|
||
byte[] datas = new byte[_audioFileReader.Length];
|
||
_audioFileReader.Read(datas, 0, datas.Length);
|
||
var duration = _audioFileReader.TotalTime;
|
||
float[] wavdata = new float[datas.Length / 4];
|
||
Buffer.BlockCopy(datas, 0, wavdata, 0, datas.Length);
|
||
var sample = wavdata.Select((float x) => x * 32768f).ToArray();
|
||
|
||
return (sample, duration);
|
||
}
|
||
}
|