FunASR/funasr/utils/export_utils.py
2024-06-03 15:15:52 +08:00

95 lines
2.8 KiB
Python

import os
import torch
def export(model, data_in=None, quantize: bool = False, opset_version: int = 14, type='onnx', **kwargs):
model_scripts = model.export(**kwargs)
export_dir = kwargs.get("output_dir", os.path.dirname(kwargs.get("init_param")))
os.makedirs(export_dir, exist_ok=True)
if not isinstance(model_scripts, (list, tuple)):
model_scripts = (model_scripts,)
for m in model_scripts:
m.eval()
if type == 'onnx':
_onnx(
m,
data_in=data_in,
quantize=quantize,
opset_version=opset_version,
export_dir=export_dir,
**kwargs
)
elif type == 'torchscripts':
device = 'cuda' if torch.cuda.is_available() else 'cpu'
_torchscripts(
m,
path=export_dir,
device=device
)
print("output dir: {}".format(export_dir))
return export_dir
def _onnx(
model,
data_in=None,
quantize: bool = False,
opset_version: int = 14,
export_dir: str = None,
**kwargs
):
dummy_input = model.export_dummy_inputs()
verbose = kwargs.get("verbose", False)
export_name = model.export_name + '.onnx'
model_path = os.path.join(export_dir, export_name)
torch.onnx.export(
model,
dummy_input,
model_path,
verbose=verbose,
opset_version=opset_version,
input_names=model.export_input_names(),
output_names=model.export_output_names(),
dynamic_axes=model.export_dynamic_axes(),
)
if quantize:
from onnxruntime.quantization import QuantType, quantize_dynamic
import onnx
quant_model_path = model_path.replace(".onnx", "_quant.onnx")
if not os.path.exists(quant_model_path):
onnx_model = onnx.load(model_path)
nodes = [n.name for n in onnx_model.graph.node]
nodes_to_exclude = [
m for m in nodes if "output" in m or "bias_encoder" in m or "bias_decoder" in m
]
quantize_dynamic(
model_input=model_path,
model_output=quant_model_path,
op_types_to_quantize=["MatMul"],
per_channel=True,
reduce_range=False,
weight_type=QuantType.QUInt8,
nodes_to_exclude=nodes_to_exclude,
)
def _torchscripts(model, path, device='cuda'):
dummy_input = model.export_dummy_inputs()
if device == 'cuda':
model = model.cuda()
if isinstance(dummy_input, torch.Tensor):
dummy_input = dummy_input.cuda()
else:
dummy_input = tuple([i.cuda() for i in dummy_input])
model_script = torch.jit.trace(model, dummy_input)
model_script.save(os.path.join(path, f'{model.export_name}.torchscripts'))