FunASR/funasr/models/sa_asr/attention.py
zhifu gao 861147c730
Dev gzf exp (#1654)
* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* bugfix

* update with main (#1631)

* update seaco finetune

* v1.0.24

---------

Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>

* sensevoice

* sensevoice

* sensevoice

* update with main (#1638)

* update seaco finetune

* v1.0.24

* update rwkv template

---------

Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* whisper

* whisper

* update style

* update style

---------

Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>
2024-04-24 16:03:38 +08:00

51 lines
1.6 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""Multi-Head Attention layer definition."""
import math
import numpy
import torch
from torch import nn
from typing import Optional, Tuple
import torch.nn.functional as F
from funasr.models.transformer.utils.nets_utils import make_pad_mask
import funasr.models.lora.layers as lora
class CosineDistanceAttention(nn.Module):
"""Compute Cosine Distance between spk decoder output and speaker profile
Args:
profile_path: speaker profile file path (.npy file)
"""
def __init__(self):
super().__init__()
self.softmax = nn.Softmax(dim=-1)
def forward(self, spk_decoder_out, profile, profile_lens=None):
"""
Args:
spk_decoder_out(torch.Tensor):(B, L, D)
spk_profiles(torch.Tensor):(B, N, D)
"""
x = spk_decoder_out.unsqueeze(2) # (B, L, 1, D)
if profile_lens is not None:
mask = (make_pad_mask(profile_lens)[:, None, :]).to(profile.device)
min_value = float(numpy.finfo(torch.tensor(0, dtype=x.dtype).numpy().dtype).min)
weights_not_softmax = F.cosine_similarity(x, profile.unsqueeze(1), dim=-1).masked_fill(
mask, min_value
)
weights = self.softmax(weights_not_softmax).masked_fill(mask, 0.0) # (B, L, N)
else:
x = x[:, -1:, :, :]
weights_not_softmax = F.cosine_similarity(x, profile.unsqueeze(1).to(x.device), dim=-1)
weights = self.softmax(weights_not_softmax) # (B, 1, N)
spk_embedding = torch.matmul(weights, profile.to(weights.device)) # (B, L, D)
return spk_embedding, weights