mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
* update * update * update * update onnx * update with main (#1492) * contextual&seaco ONNX export (#1481) * contextual&seaco ONNX export * update ContextualEmbedderExport2 * update ContextualEmbedderExport2 * update code * onnx (#1482) * qwenaudio qwenaudiochat * qwenaudio qwenaudiochat * whisper * whisper * llm * llm * llm * llm * llm * llm * llm * llm * export onnx * export onnx * export onnx * dingding * dingding * llm * doc * onnx * onnx * onnx * onnx * onnx * onnx * v1.0.15 * qwenaudio * qwenaudio * issue doc * update * update * bugfix * onnx * update export calling * update codes * remove useless code * update code --------- Co-authored-by: zhifu gao <zhifu.gzf@alibaba-inc.com> * acknowledge --------- Co-authored-by: Shi Xian <40013335+R1ckShi@users.noreply.github.com> * update onnx * update onnx * train update * train update * train update * train update --------- Co-authored-by: Shi Xian <40013335+R1ckShi@users.noreply.github.com>
235 lines
8.7 KiB
Python
235 lines
8.7 KiB
Python
import torch
|
|
import numpy as np
|
|
import logging
|
|
import math
|
|
import torch.distributed as dist
|
|
from torch.utils.data import DistributedSampler
|
|
from torch.utils.data import BatchSampler, Sampler
|
|
import torch.distributed as dist
|
|
|
|
from funasr.register import tables
|
|
|
|
|
|
@tables.register("batch_sampler_classes", "RankFullGlobalShuffleBatchSampler")
|
|
class RankFullGlobalShuffleBatchSampler(torch.utils.data.BatchSampler):
|
|
|
|
def __init__(self, dataset,
|
|
batch_type: str = "example",
|
|
batch_size: int = 100,
|
|
buffer_size: int = 30,
|
|
drop_last: bool = True,
|
|
shuffle: bool = True,
|
|
is_training: bool = True,
|
|
**kwargs):
|
|
|
|
self.drop_last = drop_last
|
|
self.pre_idx = -1
|
|
self.dataset = dataset
|
|
self.total_samples = len(dataset)
|
|
self.batch_type = batch_type
|
|
self.batch_size = int(batch_size)
|
|
self.buffer_size = buffer_size
|
|
self.max_token_length = kwargs.get("max_token_length", 1500)
|
|
self.shuffle_idx = np.arange(self.total_samples)
|
|
self.shuffle = shuffle and is_training
|
|
self.length_scale_source = kwargs.get("length_scale_source", 1.0)
|
|
|
|
try:
|
|
rank = dist.get_rank()
|
|
world_size = dist.get_world_size()
|
|
except:
|
|
rank = 0
|
|
world_size = 1
|
|
self.rank = rank
|
|
self.world_size = world_size
|
|
|
|
def __len__(self):
|
|
return (self.total_samples - 1) // (self.batch_size * self.world_size) + 1
|
|
|
|
def set_epoch(self, epoch):
|
|
np.random.seed(epoch)
|
|
|
|
def __iter__(self):
|
|
|
|
batch_size_total = self.batch_size * self.world_size
|
|
|
|
if self.shuffle:
|
|
np.random.shuffle(self.shuffle_idx)
|
|
|
|
batch = []
|
|
max_token = 0
|
|
num_sample = 0
|
|
|
|
iter_num = (self.total_samples - 1) // self.buffer_size + 1
|
|
# print("iter_num: ", iter_num)
|
|
for iter in range(self.pre_idx + 1, iter_num):
|
|
# if iter == iter_num -1 and self.drop_last:
|
|
# continue
|
|
datalen_with_index = []
|
|
for i in range(self.buffer_size):
|
|
idx = iter * self.buffer_size + i
|
|
if idx >= self.total_samples:
|
|
continue
|
|
|
|
idx_map = self.shuffle_idx[idx]
|
|
# prompt = self.dataset.indexed_dataset[idx_map]["prompt"]
|
|
|
|
source_len = self.dataset.get_source_len(idx_map) / self.length_scale_source
|
|
target_len = self.dataset.get_target_len(idx_map) if self.batch_type == 'length' else 0.0
|
|
sample_len_cur = source_len + target_len
|
|
|
|
datalen_with_index.append([idx, sample_len_cur])
|
|
|
|
datalen_with_index_sort = sorted(datalen_with_index, key=lambda x: x[1])
|
|
for item in datalen_with_index_sort:
|
|
idx, sample_len_cur_raw = item
|
|
if sample_len_cur_raw > self.max_token_length:
|
|
continue
|
|
|
|
max_token_cur = max(max_token, sample_len_cur_raw)
|
|
max_token_padding = 1 + num_sample
|
|
# if self.batch_type != 'example':
|
|
# max_token_padding *= max_token_cur
|
|
if max_token_padding <= batch_size_total:
|
|
batch.append(idx)
|
|
max_token = max_token_cur
|
|
num_sample += 1
|
|
else:
|
|
batch_rank = batch[self.rank*self.batch_size: (self.rank+1)*self.batch_size]
|
|
yield batch_rank
|
|
batch = [idx]
|
|
max_token = sample_len_cur_raw
|
|
num_sample = 1
|
|
|
|
@tables.register("batch_sampler_classes", "DistributedSamplerWarp")
|
|
class DistributedSamplerWarp(BatchSampler):
|
|
def __init__(self, dataset, batch_size, num_replicas=None, rank=None, shuffle=True, drop_last=False):
|
|
if num_replicas is None:
|
|
if not torch.distributed.is_available():
|
|
raise RuntimeError("Requires distributed package to be available")
|
|
num_replicas = torch.distributed.get_world_size()
|
|
if rank is None:
|
|
if not torch.distributed.is_available():
|
|
raise RuntimeError("Requires distributed package to be available")
|
|
rank = torch.distributed.get_rank()
|
|
|
|
self.dataset = dataset
|
|
self.batch_size = batch_size
|
|
self.num_replicas = num_replicas
|
|
self.rank = rank
|
|
self.shuffle = shuffle
|
|
self.drop_last = drop_last
|
|
|
|
# Create an instance of the DistributedSampler
|
|
self.sampler = DistributedSampler(
|
|
self.dataset,
|
|
num_replicas=self.num_replicas,
|
|
rank=self.rank,
|
|
shuffle=self.shuffle
|
|
)
|
|
|
|
# Call BatchSampler's constructor
|
|
super().__init__(self.sampler, batch_size, drop_last)
|
|
|
|
def __iter__(self):
|
|
# If we shuffle, we need to call the set_epoch method
|
|
if self.shuffle:
|
|
self.sampler.set_epoch(self.epoch)
|
|
|
|
# Generate batch indices using the parent class
|
|
return super().__iter__()
|
|
|
|
def set_epoch(self, epoch):
|
|
self.epoch = epoch
|
|
|
|
@tables.register("batch_sampler_classes", "CustomDistributedBatchSampler_fn")
|
|
def CustomDistributedBatchSampler_fn(dataset, **kwargs):
|
|
dataloader_args = {}
|
|
dataloader_args["batch_sampler"] = CustomDistributedBatchSampler(dataset, **kwargs)
|
|
dataloader_args["num_workers"] = kwargs.get("num_workers", 4)
|
|
dataloader_args["pin_memory"] = kwargs.get("pin_memory", True)
|
|
|
|
return dataloader_args
|
|
|
|
@tables.register("batch_sampler_classes", "CustomDistributedBatchSampler")
|
|
class CustomDistributedBatchSampler(Sampler):
|
|
def __init__(self, dataset,
|
|
batch_size,
|
|
num_replicas=None,
|
|
rank=None,
|
|
shuffle=True,
|
|
drop_last=False,
|
|
is_training: bool = True,
|
|
**kwargs,
|
|
):
|
|
|
|
try:
|
|
rank = dist.get_rank()
|
|
num_replicas = dist.get_world_size()
|
|
except:
|
|
rank = 0
|
|
num_replicas = 1
|
|
self.rank = rank
|
|
self.num_replicas = num_replicas
|
|
self.dataset = dataset
|
|
self.batch_size = batch_size
|
|
self.is_training = is_training
|
|
self.shuffle = shuffle and is_training
|
|
self.drop_last = drop_last
|
|
# self.total_size = len(dataset)
|
|
if self.drop_last:
|
|
self.total_size = (len(self.dataset) // (batch_size * num_replicas)) * (batch_size * num_replicas)
|
|
else:
|
|
self.total_size = math.ceil(len(self.dataset) / (batch_size * num_replicas)) * (batch_size * num_replicas)
|
|
self.num_samples = int(self.total_size // self.num_replicas)
|
|
self.epoch = 0
|
|
self.max_token_length = kwargs.get("max_token_length", None)
|
|
self.length_scale_source = kwargs.get("length_scale_source", 1.0)
|
|
|
|
def __iter__(self):
|
|
# Generate a list of indices
|
|
if self.shuffle:
|
|
g = torch.Generator()
|
|
g.manual_seed(self.epoch)
|
|
indices = torch.randperm(len(self.dataset), generator=g).tolist()
|
|
else:
|
|
indices = list(range(len(self.dataset)))
|
|
|
|
# Add extra samples to make it evenly divisible
|
|
padding_size = self.total_size - len(indices)
|
|
if padding_size <= len(indices):
|
|
indices += indices[:padding_size]
|
|
else:
|
|
indices += (indices * (padding_size // len(indices)) + indices[:padding_size % len(indices)])
|
|
|
|
assert len(indices) == self.total_size
|
|
|
|
# Subsample
|
|
indices = indices[self.rank:self.total_size:self.num_replicas]
|
|
assert len(indices) == self.num_samples
|
|
|
|
# Filter out indices with length greater than the max length, if provided
|
|
if self.max_token_length is not None:
|
|
filtered_indices = []
|
|
for idx in indices:
|
|
source_len = self.dataset.get_source_len(idx) / self.length_scale_source
|
|
if source_len <= self.max_token_length:
|
|
filtered_indices.append(idx)
|
|
indices = filtered_indices
|
|
|
|
# Now that we have only the indices for this replica, chunk them into batches
|
|
batches = [indices[i:i + self.batch_size] for i in range(0, len(indices), self.batch_size)]
|
|
|
|
# Drop the last batch if it's not full and drop_last is True
|
|
if self.drop_last and len(batches[-1]) != self.batch_size:
|
|
batches = batches[:-1]
|
|
|
|
return iter(batches)
|
|
|
|
def __len__(self):
|
|
|
|
return self.num_samples // self.batch_size
|
|
|
|
def set_epoch(self, epoch):
|
|
self.epoch = epoch
|