FunASR/funasr/models/sense_voice/whisper_lib/audio.py
zhifu gao d19f48e174
Dev gzf exp (#1593)
* update

* update with main (#1582)

* update

* Expose the max_end_silence_time to the user (#1532)

* update

* update

* update

* update

* update

* update

* update

* update

* update

* finetune

* finetune

* finetune

* finetune

* finetune

* finetune

* fix: resolve IndexError when using spk model and the audio contains only 1 segment (#1535)

* install requirements automatically

* install requirements automatically

* install requirements automatically

* install requirements automatically

* install requirements automatically

* install requirements automatically

* install requirements automatically

* v1.0.19

* v1.0.19

* train

* train

* docs

* update

* update

* update

* update

* update

* update

* update

* train update

* bugfix seg_dict_file

* bugfix seg_dict_file

* train

* train

* train (#1548)

* Dev gzf new (#1551)

* train

* train

* <funasr>: <punc online> (#1552)

1.修正添加标点时英文首单词和第二个单词被错误合并的问题。

Co-authored-by: carl.che <carl.che@cloudminds.com>

* Dev gzf new (#1553)

* train

* train

* train

* train

* train

* train

* train

* train

* Dev gzf new (#1554)

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* Dev gzf new (#1555)

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* 修正commit 87b62d6895 引入的英文整句标点预测导致末尾两个单词中间的空格被删除的问题。 (#1556)

* <funasr>: <punc online>

1.修正添加标点时英文首单词和第二个单词被错误合并的问题。

* <funasr>: <punc online>

1.修正commit 87b62d6895 引入的英文整句标点预测导致末尾两个单词中间的空格被删除的问题。

---------

Co-authored-by: carl.che <carl.che@cloudminds.com>

* Dev gzf new (#1557)

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* Dev gzf new (#1559)

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* Dev gzf new (#1561)

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* Dev gzf new (#1562)

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* Dev gzf new (#1567)

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* whisper_lib for sense voice

* aishell recipe

* sense voice (#1568)

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* whisper_lib for sense voice

* aishell recipe

* sense voice

* Dev gzf new (#1574)

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* whisper_lib for sense voice

* aishell recipe

* sense voice

* docs

* bugfix (#1580)

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* whisper_lib for sense voice

* aishell recipe

* sense voice

* docs

* bugfix

* v1.0.20

---------

Co-authored-by: BOBOTANG <tzfjobmail@gmail.com>
Co-authored-by: Atomie CHEN <atomic_cwh@163.com>
Co-authored-by: Carl <415692979@qq.com>
Co-authored-by: carl.che <carl.che@cloudminds.com>

* ctc

* ctc

* ctc

* ctc

* update with main (#1592)

* update

* Expose the max_end_silence_time to the user (#1532)

* update

* update

* update

* update

* update

* update

* update

* update

* update

* finetune

* finetune

* finetune

* finetune

* finetune

* finetune

* fix: resolve IndexError when using spk model and the audio contains only 1 segment (#1535)

* install requirements automatically

* install requirements automatically

* install requirements automatically

* install requirements automatically

* install requirements automatically

* install requirements automatically

* install requirements automatically

* v1.0.19

* v1.0.19

* train

* train

* docs

* update

* update

* update

* update

* update

* update

* update

* train update

* bugfix seg_dict_file

* bugfix seg_dict_file

* train

* train

* train (#1548)

* Dev gzf new (#1551)

* train

* train

* <funasr>: <punc online> (#1552)

1.修正添加标点时英文首单词和第二个单词被错误合并的问题。

Co-authored-by: carl.che <carl.che@cloudminds.com>

* Dev gzf new (#1553)

* train

* train

* train

* train

* train

* train

* train

* train

* Dev gzf new (#1554)

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* Dev gzf new (#1555)

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* 修正commit 87b62d6895 引入的英文整句标点预测导致末尾两个单词中间的空格被删除的问题。 (#1556)

* <funasr>: <punc online>

1.修正添加标点时英文首单词和第二个单词被错误合并的问题。

* <funasr>: <punc online>

1.修正commit 87b62d6895 引入的英文整句标点预测导致末尾两个单词中间的空格被删除的问题。

---------

Co-authored-by: carl.che <carl.che@cloudminds.com>

* Dev gzf new (#1557)

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* Dev gzf new (#1559)

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* Dev gzf new (#1561)

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* Dev gzf new (#1562)

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* Dev gzf new (#1567)

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* whisper_lib for sense voice

* aishell recipe

* sense voice (#1568)

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* whisper_lib for sense voice

* aishell recipe

* sense voice

* Dev gzf new (#1574)

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* whisper_lib for sense voice

* aishell recipe

* sense voice

* docs

* bugfix (#1580)

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* train

* whisper_lib for sense voice

* aishell recipe

* sense voice

* docs

* bugfix

* v1.0.20

* update demo page (#1585)

* commit web page vue

* optimize web page

* optimize web page

* remove other private component

* modify web page

* Update index.vue

* Update lxwjzxfw.vue

* Update sstx.vue

* update static file

---------

Co-authored-by: BOBOTANG <tzfjobmail@gmail.com>
Co-authored-by: Atomie CHEN <atomic_cwh@163.com>
Co-authored-by: Carl <415692979@qq.com>
Co-authored-by: carl.che <carl.che@cloudminds.com>
Co-authored-by: bltcn <blt@tom.com>

* sensevoice

* sensevoice

---------

Co-authored-by: BOBOTANG <tzfjobmail@gmail.com>
Co-authored-by: Atomie CHEN <atomic_cwh@163.com>
Co-authored-by: Carl <415692979@qq.com>
Co-authored-by: carl.che <carl.che@cloudminds.com>
Co-authored-by: bltcn <blt@tom.com>
2024-04-08 18:51:53 +08:00

158 lines
4.9 KiB
Python

import os
from functools import lru_cache
from subprocess import CalledProcessError, run
from typing import Optional, Union
import numpy as np
import torch
import torch.nn.functional as F
from .utils import exact_div
# hard-coded audio hyperparameters
SAMPLE_RATE = 16000
N_FFT = 400
HOP_LENGTH = 160
CHUNK_LENGTH = 30
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk
N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000 frames in a mel spectrogram input
N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2
FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token
def load_audio(file: str, sr: int = SAMPLE_RATE):
"""
Open an audio file and read as mono waveform, resampling as necessary
Parameters
----------
file: str
The audio file to open
sr: int
The sample rate to resample the audio if necessary
Returns
-------
A NumPy array containing the audio waveform, in float32 dtype.
"""
# This launches a subprocess to decode audio while down-mixing
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
# fmt: off
cmd = [
"ffmpeg",
"-nostdin",
"-threads", "0",
"-i", file,
"-f", "s16le",
"-ac", "1",
"-acodec", "pcm_s16le",
"-ar", str(sr),
"-"
]
# fmt: on
try:
out = run(cmd, capture_output=True, check=True).stdout
except CalledProcessError as e:
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
"""
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
"""
if torch.is_tensor(array):
if array.shape[axis] > length:
array = array.index_select(
dim=axis, index=torch.arange(length, device=array.device)
)
if array.shape[axis] < length:
pad_widths = [(0, 0)] * array.ndim
pad_widths[axis] = (0, length - array.shape[axis])
array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes])
else:
if array.shape[axis] > length:
array = array.take(indices=range(length), axis=axis)
if array.shape[axis] < length:
pad_widths = [(0, 0)] * array.ndim
pad_widths[axis] = (0, length - array.shape[axis])
array = np.pad(array, pad_widths)
return array
@lru_cache(maxsize=None)
def mel_filters(device, n_mels: int, filters_path: str=None) -> torch.Tensor:
"""
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
Allows decoupling librosa dependency; saved using:
np.savez_compressed(
"mel_filters.npz",
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
mel_128=librosa.filters.mel(sr=16000, n_fft=400, n_mels=128),
)
"""
assert n_mels in {80, 128}, f"Unsupported n_mels: {n_mels}"
if filters_path is None:
filters_path = os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")
with np.load(filters_path, allow_pickle=False) as f:
return torch.from_numpy(f[f"mel_{n_mels}"]).to(device)
def log_mel_spectrogram(
audio: Union[str, np.ndarray, torch.Tensor],
n_mels: int = 80,
padding: int = 0,
device: Optional[Union[str, torch.device]] = None,
):
"""
Compute the log-Mel spectrogram of
Parameters
----------
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
n_mels: int
The number of Mel-frequency filters, only 80 is supported
padding: int
Number of zero samples to pad to the right
device: Optional[Union[str, torch.device]]
If given, the audio tensor is moved to this device before STFT
Returns
-------
torch.Tensor, shape = (80, n_frames)
A Tensor that contains the Mel spectrogram
"""
if not torch.is_tensor(audio):
if isinstance(audio, str):
audio = load_audio(audio)
audio = torch.from_numpy(audio)
if device is not None:
audio = audio.to(device)
if padding > 0:
audio = F.pad(audio, (0, padding))
window = torch.hann_window(N_FFT).to(audio.device)
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
magnitudes = stft[..., :-1].abs() ** 2
filters = mel_filters(audio.device, n_mels)
mel_spec = filters @ magnitudes
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
return log_spec