mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
161 lines
5.5 KiB
Python
161 lines
5.5 KiB
Python
from typing import Iterator
|
|
from typing import List
|
|
from typing import Tuple
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
from typeguard import check_argument_types
|
|
|
|
from funasr.fileio.read_text import load_num_sequence_text
|
|
from funasr.samplers.abs_sampler import AbsSampler
|
|
|
|
|
|
class NumElementsBatchSampler(AbsSampler):
|
|
def __init__(
|
|
self,
|
|
batch_bins: int,
|
|
shape_files: Union[Tuple[str, ...], List[str]],
|
|
min_batch_size: int = 1,
|
|
sort_in_batch: str = "descending",
|
|
sort_batch: str = "ascending",
|
|
drop_last: bool = False,
|
|
padding: bool = True,
|
|
):
|
|
assert check_argument_types()
|
|
assert batch_bins > 0
|
|
if sort_batch != "ascending" and sort_batch != "descending":
|
|
raise ValueError(
|
|
f"sort_batch must be ascending or descending: {sort_batch}"
|
|
)
|
|
if sort_in_batch != "descending" and sort_in_batch != "ascending":
|
|
raise ValueError(
|
|
f"sort_in_batch must be ascending or descending: {sort_in_batch}"
|
|
)
|
|
|
|
self.batch_bins = batch_bins
|
|
self.shape_files = shape_files
|
|
self.sort_in_batch = sort_in_batch
|
|
self.sort_batch = sort_batch
|
|
self.drop_last = drop_last
|
|
|
|
# utt2shape: (Length, ...)
|
|
# uttA 100,...
|
|
# uttB 201,...
|
|
utt2shapes = [
|
|
load_num_sequence_text(s, loader_type="csv_int") for s in shape_files
|
|
]
|
|
|
|
first_utt2shape = utt2shapes[0]
|
|
for s, d in zip(shape_files, utt2shapes):
|
|
if set(d) != set(first_utt2shape):
|
|
raise RuntimeError(
|
|
f"keys are mismatched between {s} != {shape_files[0]}"
|
|
)
|
|
|
|
# Sort samples in ascending order
|
|
# (shape order should be like (Length, Dim))
|
|
keys = sorted(first_utt2shape, key=lambda k: first_utt2shape[k][0])
|
|
if len(keys) == 0:
|
|
raise RuntimeError(f"0 lines found: {shape_files[0]}")
|
|
if padding:
|
|
# If padding case, the feat-dim must be same over whole corpus,
|
|
# therefore the first sample is referred
|
|
feat_dims = [np.prod(d[keys[0]][1:]) for d in utt2shapes]
|
|
else:
|
|
feat_dims = None
|
|
|
|
# Decide batch-sizes
|
|
batch_sizes = []
|
|
current_batch_keys = []
|
|
for key in keys:
|
|
current_batch_keys.append(key)
|
|
# shape: (Length, dim1, dim2, ...)
|
|
if padding:
|
|
for d, s in zip(utt2shapes, shape_files):
|
|
if tuple(d[key][1:]) != tuple(d[keys[0]][1:]):
|
|
raise RuntimeError(
|
|
"If padding=True, the "
|
|
f"feature dimension must be unified: {s}",
|
|
)
|
|
bins = sum(
|
|
len(current_batch_keys) * sh[key][0] * d
|
|
for sh, d in zip(utt2shapes, feat_dims)
|
|
)
|
|
else:
|
|
bins = sum(
|
|
np.prod(d[k]) for k in current_batch_keys for d in utt2shapes
|
|
)
|
|
|
|
if bins > batch_bins and len(current_batch_keys) >= min_batch_size:
|
|
batch_sizes.append(len(current_batch_keys))
|
|
current_batch_keys = []
|
|
else:
|
|
if len(current_batch_keys) != 0 and (
|
|
not self.drop_last or len(batch_sizes) == 0
|
|
):
|
|
batch_sizes.append(len(current_batch_keys))
|
|
|
|
if len(batch_sizes) == 0:
|
|
# Maybe we can't reach here
|
|
raise RuntimeError("0 batches")
|
|
|
|
# If the last batch-size is smaller than minimum batch_size,
|
|
# the samples are redistributed to the other mini-batches
|
|
if len(batch_sizes) > 1 and batch_sizes[-1] < min_batch_size:
|
|
for i in range(batch_sizes.pop(-1)):
|
|
batch_sizes[-(i % len(batch_sizes)) - 1] += 1
|
|
|
|
if not self.drop_last:
|
|
# Bug check
|
|
assert sum(batch_sizes) == len(keys), f"{sum(batch_sizes)} != {len(keys)}"
|
|
|
|
# Set mini-batch
|
|
self.batch_list = []
|
|
iter_bs = iter(batch_sizes)
|
|
bs = next(iter_bs)
|
|
minibatch_keys = []
|
|
for key in keys:
|
|
minibatch_keys.append(key)
|
|
if len(minibatch_keys) == bs:
|
|
if sort_in_batch == "descending":
|
|
minibatch_keys.reverse()
|
|
elif sort_in_batch == "ascending":
|
|
# Key are already sorted in ascending
|
|
pass
|
|
else:
|
|
raise ValueError(
|
|
"sort_in_batch must be ascending"
|
|
f" or descending: {sort_in_batch}"
|
|
)
|
|
|
|
self.batch_list.append(tuple(minibatch_keys))
|
|
minibatch_keys = []
|
|
try:
|
|
bs = next(iter_bs)
|
|
except StopIteration:
|
|
break
|
|
|
|
if sort_batch == "ascending":
|
|
pass
|
|
elif sort_batch == "descending":
|
|
self.batch_list.reverse()
|
|
else:
|
|
raise ValueError(
|
|
f"sort_batch must be ascending or descending: {sort_batch}"
|
|
)
|
|
|
|
def __repr__(self):
|
|
return (
|
|
f"{self.__class__.__name__}("
|
|
f"N-batch={len(self)}, "
|
|
f"batch_bins={self.batch_bins}, "
|
|
f"sort_in_batch={self.sort_in_batch}, "
|
|
f"sort_batch={self.sort_batch})"
|
|
)
|
|
|
|
def __len__(self):
|
|
return len(self.batch_list)
|
|
|
|
def __iter__(self) -> Iterator[Tuple[str, ...]]:
|
|
return iter(self.batch_list)
|