FunASR/funasr/export/models/target_delay_transformer.py
2023-04-07 14:37:30 +08:00

155 lines
4.5 KiB
Python

from typing import Tuple
import torch
import torch.nn as nn
from funasr.models.encoder.sanm_encoder import SANMEncoder
from funasr.export.models.encoder.sanm_encoder import SANMEncoder as SANMEncoder_export
from funasr.models.encoder.sanm_encoder import SANMVadEncoder
from funasr.export.models.encoder.sanm_encoder import SANMVadEncoder as SANMVadEncoder_export
class CT_Transformer(nn.Module):
def __init__(
self,
model,
max_seq_len=512,
model_name='punc_model',
**kwargs,
):
super().__init__()
onnx = False
if "onnx" in kwargs:
onnx = kwargs["onnx"]
self.embed = model.embed
self.decoder = model.decoder
# self.model = model
self.feats_dim = self.embed.embedding_dim
self.num_embeddings = self.embed.num_embeddings
self.model_name = model_name
if isinstance(model.encoder, SANMEncoder):
self.encoder = SANMEncoder_export(model.encoder, onnx=onnx)
else:
assert False, "Only support samn encode."
def forward(self, inputs: torch.Tensor, text_lengths: torch.Tensor) -> Tuple[torch.Tensor, None]:
"""Compute loss value from buffer sequences.
Args:
input (torch.Tensor): Input ids. (batch, len)
hidden (torch.Tensor): Target ids. (batch, len)
"""
x = self.embed(inputs)
# mask = self._target_mask(input)
h, _ = self.encoder(x, text_lengths)
y = self.decoder(h)
return y
def get_dummy_inputs(self):
length = 120
text_indexes = torch.randint(0, self.embed.num_embeddings, (2, length))
text_lengths = torch.tensor([length-20, length], dtype=torch.int32)
return (text_indexes, text_lengths)
def get_input_names(self):
return ['inputs', 'text_lengths']
def get_output_names(self):
return ['logits']
def get_dynamic_axes(self):
return {
'inputs': {
0: 'batch_size',
1: 'feats_length'
},
'text_lengths': {
0: 'batch_size',
},
'logits': {
0: 'batch_size',
1: 'logits_length'
},
}
class CT_Transformer_VadRealtime(nn.Module):
def __init__(
self,
model,
max_seq_len=512,
model_name='punc_model',
**kwargs,
):
super().__init__()
onnx = False
if "onnx" in kwargs:
onnx = kwargs["onnx"]
self.embed = model.embed
if isinstance(model.encoder, SANMVadEncoder):
self.encoder = SANMVadEncoder_export(model.encoder, onnx=onnx)
else:
assert False, "Only support samn encode."
self.decoder = model.decoder
self.model_name = model_name
def forward(self, inputs: torch.Tensor,
text_lengths: torch.Tensor,
vad_indexes: torch.Tensor,
sub_masks: torch.Tensor,
) -> Tuple[torch.Tensor, None]:
"""Compute loss value from buffer sequences.
Args:
input (torch.Tensor): Input ids. (batch, len)
hidden (torch.Tensor): Target ids. (batch, len)
"""
x = self.embed(inputs)
# mask = self._target_mask(input)
h, _ = self.encoder(x, text_lengths, vad_indexes, sub_masks)
y = self.decoder(h)
return y
def with_vad(self):
return True
def get_dummy_inputs(self):
length = 120
text_indexes = torch.randint(0, self.embed.num_embeddings, (1, length))
text_lengths = torch.tensor([length], dtype=torch.int32)
vad_mask = torch.ones(length, length, dtype=torch.float32)[None, None, :, :]
sub_masks = torch.ones(length, length, dtype=torch.float32)
sub_masks = torch.tril(sub_masks).type(torch.float32)
return (text_indexes, text_lengths, vad_mask, sub_masks[None, None, :, :])
def get_input_names(self):
return ['inputs', 'text_lengths', 'vad_masks', 'sub_masks']
def get_output_names(self):
return ['logits']
def get_dynamic_axes(self):
return {
'inputs': {
1: 'feats_length'
},
'vad_masks': {
2: 'feats_length1',
3: 'feats_length2'
},
'sub_masks': {
2: 'feats_length1',
3: 'feats_length2'
},
'logits': {
1: 'logits_length'
},
}